How Do You Prove the Time Derivatives of Polar Unit Vectors?

AI Thread Summary
The discussion centers on proving the time derivatives of polar unit vectors, specifically that d\hat{r}/dt = \dot{\phi} \hat{\phi} and d\hat{\phi}/dt = -\dot{\phi} \hat{r}. Participants explore the geometric interpretation of these derivatives, emphasizing the orthogonality of the unit vectors \hat{r} and \hat{\phi}. Confusion arises regarding the assumption of changes in angle versus changes in radius, but clarification is achieved through the definitions of the unit vectors in Cartesian coordinates. The conversation highlights the importance of understanding the geometric context and suggests consulting specific textbooks for further clarity.
A2Airwaves
Messages
9
Reaction score
0

Homework Statement


Prove: $$\frac{d\hat{r}}{dt} = \dot{\phi} \hat{\phi }$$ and $$\frac{d\hat{\phi}}{dt} = -\dot{\phi} \hat{r }$$

Homework Equations

The Attempt at a Solution


I solved this for an Analytical Mechanics assignment a month ago, and completely forgot how it goes..
$$\hat{r} ⊥ \hat{\phi}$$
An change from r1 to r2 will create a ##Δ\phi## that is in the ##\hat{\phi}## direction...
and because ##\hat{r} ⊥ \hat{\phi}##, we can say the same happens for a change from ##\phi1## to ##\phi2## except in the ##-\hat{r}## direction. Assuming the change is infinitesimal, we can write ##Δr## or ##Δ\phi## as d/dt.

But then I'm confused because, why are we assuming a change from r1 to r2 is a rotation by ##Δ\phi,## and not a change of the length r..? Am I getting something completely wrong here?
 
Physics news on Phys.org
Go back to definition:
##\hat r = \cos(\phi(t)) \vec i + \sin(\phi(t)) \vec j ##
##\hat \phi = -\sin(\phi(t)) \vec i + \cos(\phi(t)) \vec j ##

And use time derivative
 
Go back to definition:
##\hat r = \cos(\phi(t)) \vec i + \sin(\phi(t)) \vec j ##
##\hat \phi = -\sin(\phi(t)) \vec i + \cos(\phi(t)) \vec j ##

And use time derivative
 
geoffrey159 said:
Go back to definition:
##\hat r = \cos(\phi(t)) \vec i + \sin(\phi(t)) \vec j ##
##\hat \phi = -\sin(\phi(t)) \vec i + \cos(\phi(t)) \vec j ##

And use time derivative
Thank you so much!
My professor emphasized the geometric interpretation of the answers that I completely forgot about those definitions.
Worked like magic, problem solved.

By the way, is there a reason why you're writing ##\vec{i}## and not ##\hat{i}##?
I'm used to ##\hat{i}## as a notation for unit vectors, but do you mean the same thing or are you referring to something else?
 
Yes you're right, I meant ##\hat i## and ## \hat j ##.
For clear explanations and nice drawings, look up Kleppner and Kolenkow first chapter.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top