How Do You Solve Norm and Matrix Approximation Problems in Linear Algebra?

  • Thread starter Thread starter yooyo
  • Start date Start date
  • Tags Tags
    Norm
yooyo
Messages
7
Reaction score
0
Q1:
how do we find a vector x so that ||A|| = ||Ax||/||x||(using the infinite norm)
totally no clue on this question..

Q2: Suppose that A is an n×n invertible matrix, and B is an approximation of A's inverse A^-1 such that AB = I + E for some matrix E. Show that the relative error in approximating A^-1 by B is bounded by ||E||(for some arbitrary matrix norm ||· ||).
relative error=(a^-1-B)/A^-1
AB=I+E--------1
AA^-1=I-------2
1/2: B/A^-1=1+E/I=1+E => (A^-1-B)/A^=-E
now I'm stucking...how do I connect -E to norm of E?
am I on the right track?any suggestion? thanks
 
Physics news on Phys.org
1) ||Ax|| is equal to the component of y=Ax with the maximum magnitude. Now each component of y satisfies

y_i = A_i^Tx \leq \sum_j |a_{ij}|

for

||x||_{\infty} \leq 1

So the infinity norm of a matrix is

\max_{i} \sum_j |a_{ij}|

Now it is straightforward to identify the desired x.2) Your syntax does not make any sense at all: What do you mean by B/A^-1? I suggest you follow matrix convention and use the definition for relative error.
 
Last edited:
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top