- #1
- 23,082
- 7,478
Homework Statement
Make a substitution and then evaluate the integral.
∫5 sin(lnx) dx
Homework Equations
The Attempt at a Solution
Let t = lnx
et = elnx
et = x
dt = 1/x dx
dx = xdt
dx = et dt
Now the integral is: 5∫sin(t) et dt
Integrating by parts:
u = sin(t), du = cos(t) dt
dv = et dt, v = et
5(sin(t)et - ∫cos(t)et dt)
By parts again:
u=cos(t), du=-sin(t) dt
dv = et dt, v = et
5[sin(t)et - (cos(t)et + ∫sin(t)et dt)]
Distributing the 5 and the negative sign:
5∫sin(t)et dt = 5sin(t)et - 5cos(t)et - 5∫sin(t)et dt]
Bringing the integral over the left:
10∫sin(t)et = 5sin(t)et - 5cos(t)et
Dividing the 10 out:
∫sin(t)et = 1/2(sin(t)et - cos(t)et)
Substituting lnx = t
1/2x[sin(lnx) - cos(lnx)] +C
Now, supposedly the answer is 5/2x [sin(lnx)-cos(lnx)] + C, but I can't figure out why.