Hints:
ii) Notice that: lg (2x - 2) = lg[(-2)(1 - x)]. Now, if lg represents a principal value of the logarithm with a branch cut along the negative real axis, then:
<br />
\mathrm{lg} \left[(-2)(1 - x) \right] = \mathrm{lg}(e) \cdot \ln{\left[(-2)(1-x) \right]} = \left\lbrace<br />
\begin{array}{ll}<br />
\mathrm{lg}(e) \cdot [\ln(2) + \ln(1-x)] = \mathrm{lg}(2) + \mathrm{lg}(1 - x) &, \ \mathrm{Arg}(1-x) \le 0 \\<br />
<br />
\mathrm{lg}(e) \cdot [\ln(2) + \ln(1-x) - 2 \pi \, i] = \mathrm{lg}(2) + \mathrm{lg}(1 - x) - 2 \pi \, \mathrm{lg}(e) \, i &, \ \mathrm{Arg}(1-x) > 0<br />
\end{array}\right.<br />