How Do You Solve This Linear System and Identify Free and Basic Variables?

amcgl064
Messages
2
Reaction score
0
Find the general solution to the following system of equations and indicate which variables are free and which are basic.

x_1 + 4x_4 + 3 = x_2 + x_3
x_1 + 3x_4 + 1 = \frac{1}{2}x_3
x_1 + x_2 + 2x_4 = 1

Putting it in augmented matrix form to start we have:



1 -1 -1 4 | -3
1 0 -1/2 3 | -1
1 1 0 2 | 1

Now performing the following fundamental row operations:

R1<-->R2
R2+R3-->R2
-2R3+R2-->R2
-R3+R1-->R3
R2/-2
R2+R3-->R2
-3R3+R1-->R1

And finally I end with the augmented matrix:

1 0 -2 0 | 5
0 1 0 0 | 0
0 0 -1/2 1 |-2

Can someone please tell me if I got the correct matrix at the end and if so how do I determine which variables are free and which are basic?

Thank you.
 
Physics news on Phys.org
You were so close to getting the LaTeX - all you needed was a double-hash on each side of each line:

##x_1 + 4x_4 + 3 = x_2 + x_3##
##x_1 + 3x_4 + 1 = \frac{1}{2}x_3##
##x_1 + x_2 + 2x_4 = 1##

The secret is to think about what you know at each stage...
You have four unknowns and three equations - so what does that mean?

Putting it in augmented matrix form to start we have:

$$\left ( \begin{array}{cccc}
1 & -1 & -1 & 4 \\
2 & 0 & -1 & 6\\
1 & 1 & 0 & 2
\end{array}\right |
\left . \begin{array}{c}
-3\\-2\\1 \end{array}\right )$$
...I took the liberty of doubling row 2 to get rid of the annoying fraction.
The row-reductions to echelon form follows more easily:
Can someone please tell me if I got the correct matrix at the end...

R2 <--- R2-2R1; R3 <--- R3-R1
... does not lead to your matrix, no.
You want to check my working though.

I'll deal with the second question when you've done this.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
3K
Replies
2
Views
3K
Replies
7
Views
1K
Replies
2
Views
1K
Replies
15
Views
2K
Replies
3
Views
1K
Back
Top