How Do You Write the Neutrino Mixing Matrix Us from Equations 3 and 4?

SuperStringboy
Messages
74
Reaction score
0
Please look at equation 3 and 4 of this paper

http://arxiv.org/abs/0707.2481v1

I am facing problem to write the matrix Us

Can anybody help me to write the complete matrix?
 
Physics news on Phys.org
I think I understand how to write it, but I feel like I'm getting some different minus signs. Basically you want the SO(5) rotation group, and matrices for one direction about another (plane, or whatever its called).

If you look at http://reference.wolfram.com/mathematica/ref/RotationMatrix.html
Under Applications, they show how to generate the matrix form for a rotation in SO[N]. Then you take these and multiply them how they have it in the paper, order obviously matters.

I do:
Code:
SO[n_] := Map[RotationMatrix[\[Theta], #] &,    Subsets[Table[UnitVector[n, i], {i, n}], {2}]];
SO5MAP = Map[ MatrixForm, SO[5]];
\[Theta][a_, b_] := Subscript[\[CapitalTheta], a, b]
R12 = SO5MAP[[1]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 2]};
R13 = SO5MAP[[2]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 3]};
R23 = SO5MAP[[5]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 3]};
R14 = SO5MAP[[3]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 4]};
R15 = SO5MAP[[4]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 5]};
R24 = SO5MAP[[6]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 4]};
R25 = SO5MAP[[7]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 5]};
R34 = SO5MAP[[8]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 4]};
R35 = SO5MAP[[9]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 5]};
R45 = SO5MAP[[10]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      4, 5]};
ROT = R45.(R35.(R34.(R25.(R24.(R15.(R14.(R23.(R13.R12))))))));
ROT /. {Cos[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[c, a, b],     Sin[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[s, a, b]} //   Simplify // MatrixForm

The output looks like

<br /> \left(<br /> \begin{array}{ccccc}<br /> c_{1,2} c_{1,3} c_{1,4} c_{1,5} &amp; -c_{1,3} c_{1,4} c_{1,5} s_{1,2} &amp; -c_{1,4} c_{1,5} s_{1,3} &amp; -c_{1,5} s_{1,4} &amp; -s_{1,5} \\<br /> c_{2,3} c_{2,4} c_{2,5} s_{1,2}-c_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) &amp; c_{1,2} c_{2,3} c_{2,4} c_{2,5}+s_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) &amp; -c_{1,3} c_{2,4} c_{2,5} s_{2,3}+s_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right) &amp; -c_{1,4} c_{2,5} s_{2,4}+s_{1,4} s_{1,5} s_{2,5} &amp; -c_{1,5} s_{2,5} \\<br /> c_{3,5} \left(s_{1,2} \left(c_{3,4} s_{2,3}-c_{2,3} s_{2,4} s_{3,4}\right)+c_{1,2} \left(c_{2,3} c_{3,4} s_{1,3}+\left(-c_{1,3} c_{2,4} s_{1,4}+s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}\right)\right)-\left(c_{1,2} c_{1,3} c_{1,4} c_{2,5} s_{1,5}+\left(c_{2,3} c_{2,4} s_{1,2}-c_{1,2} \left(c_{2,4} s_{1,3} s_{2,3}+c_{1,3} s_{1,4} s_{2,4}\right)\right) s_{2,5}\right) s_{3,5} &amp; c_{3,5} \left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right)-\left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right) s_{3,5} &amp; s_{1,3} \left(c_{2,4} c_{3,5} s_{1,4} s_{3,4}+\left(c_{1,4} c_{2,5} s_{1,5}-s_{1,4} s_{2,4} s_{2,5}\right) s_{3,5}\right)+c_{1,3} \left(c_{2,3} c_{3,4} c_{3,5}+s_{2,3} \left(c_{3,5} s_{2,4} s_{3,4}+c_{2,4} s_{2,5} s_{3,5}\right)\right) &amp; c_{2,5} s_{1,4} s_{1,5} s_{3,5}+c_{1,4} \left(-c_{2,4} c_{3,5} s_{3,4}+s_{2,4} s_{2,5} s_{3,5}\right) &amp; -c_{1,5} c_{2,5} s_{3,5} \\<br /> c_{4,5} \left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right)-\left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right) s_{4,5} &amp; c_{4,5} \left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right)-\left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} &amp; c_{4,5} \left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right)-\left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} &amp; c_{2,5} c_{3,5} s_{1,4} s_{1,5} s_{4,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5} s_{4,5}+c_{2,4} \left(c_{3,4} c_{4,5}+s_{3,4} s_{3,5} s_{4,5}\right)\right) &amp; -c_{1,5} c_{2,5} c_{3,5} s_{4,5} \\<br /> c_{4,5} \left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right)+\left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right) s_{4,5} &amp; c_{4,5} \left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right) s_{4,5} &amp; c_{4,5} \left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right) s_{4,5} &amp; -c_{4,5} \left(c_{2,5} c_{3,5} s_{1,4} s_{1,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,4} c_{2,4} c_{3,4} s_{4,5} &amp; c_{1,5} c_{2,5} c_{3,5} c_{4,5}<br /> \end{array}<br /> \right)<br />

again, I am not sure where there is a sign difference.
 
Thanks a loooooooooooot ! :)
 
Ah actually what you need to do is take the transpose of each of those matrices, then you get what's right:

R12 = Transpose[SO5MAP[[1]]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][1, 2]};

The transpose is what you want, and then apply those in order. The signs will be correct then.
 
Thanks again. I realized that too. So did not check recently.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top