How Does a Flywheel Begin to Move with Constant Speed After Adding a Mass?

AI Thread Summary
The discussion centers on understanding how a flywheel can transition from rest to constant speed after adding a mass. Participants express confusion about the mechanics involved, particularly regarding the tension in the rope and the role of friction and inertial forces. It is clarified that if the hanging mass moves with constant velocity, the net force on it is zero, which helps determine the tension. The conversation also touches on the need for an initial nudge to start motion and the relationship between static and kinetic friction. Ultimately, the friction is acknowledged to act as a torque at the axle of the flywheel.
physea
Messages
211
Reaction score
3
Member advised to use the homework template for posts in the homework sections of PF.
upload_2016-5-7_21-24-29.png


For this problem, I don't understand how can the system be at rest and immediately after placing the mass, to move with constant speed. But anyways, can you tell me please how to proceed?

On the hanging mass, there is mg acting and T the tension of the rope. On the flywheel, the tension of the rope is acting and the friction of the bearings.

I have no clue what the tension of the rope is. I wanted to say that opposite to the mg, is the friction and the inertial force of the flywheel, but I am not familiar with calculations of the inertial force.

Any idea?
 
Physics news on Phys.org
Deleted
 
Last edited:
physea said:
View attachment 100425

For this problem, I don't understand how can the system be at rest and immediately after placing the mass, to move with constant speed. But anyways, can you tell me please how to proceed?

On the hanging mass, there is mg acting and T the tension of the rope. On the flywheel, the tension of the rope is acting and the friction of the bearings.

I have no clue what the tension of the rope is. I wanted to say that opposite to the mg, is the friction and the inertial force of the flywheel, but I am not familiar with calculations of the inertial force.

Any idea?
I would not be concerned about the ' initially at rest ' phrase.

If the 0.25kg hanging mass has constant velocity, then what is the net force on this mass ? The answer to this should give you the tension for this case.

That should get you started.
 
physea said:
I don't understand how can the system be at rest and immediately after placing the mass, to move with constant speed.
Can you understand how a box may be at rest on a horizontal floor, yet when pushed with a constant horizontal force F moves at constant velocity?
 
haruspex said:
Can you understand how a box may be at rest on a horizontal floor, yet when pushed with a constant horizontal force F moves at constant velocity?

OK got it. But the tricky bit is what happens during the time that speed is zero and the very next moment is some constant value. I thought that in order to attain that constant speed, there must be an acceleration. It may indeed be within fractions of second, but in that time, dV/dt is not zero, it has some value! Anyway, as for the problem, the friction cancels the effect of the weight. But do I have to calculate them as torques? because I don't know if the friction is exerted at the same line as the weight of the falling mass
 
physea said:
what happens during the time that speed is zero and the very next moment is some constant value
You are right that there is a small question of how the motion gets started. You have to assume it was given some nudge to get it moving.
Otherwise, if you steadily increase the force until motion starts it will switch from static to the lower kinetic friction and therefore accelerate.
physea said:
do I have to calculate them as torques? because I don't know if the friction is exerted at the same line as the weight of the falling mass
The friction consists of a torque at the axle.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top