B How does a spinor affect a wave function?

justpeeking
Messages
1
Reaction score
1
How do spinors affect wave function solutions? Like how is the output different
 
Physics news on Phys.org
justpeeking said:
How do spinors affect wave function solutions? Like how is the output different
The wave function of a particle with spin is the composition of a spatial component and a spinor. See the Dirac equation, for example:

https://en.wikipedia.org/wiki/Dirac_equation
 
justpeeking said:
How do spinors affect wave function solutions? Like how is the output different
Due to spin, you can have a state with two electrons with the same spatial wave function. It has dramatic consequences for chemistry, see e.g. https://en.wikipedia.org/wiki/Helium_atom.
 
PeroK said:
The wave function of a particle with spin is the composition of a spatial component and a spinor. See the Dirac equation, for example:

https://en.wikipedia.org/wiki/Dirac_equation

Respecting your expertise and appreciating Demystifier's enlightening answer, nevertheless might a slightly more illluminating answer* to the question be:

A spinor wave function has multiple spatial components (four for a single-electron solution of the Dirac equation).

It is the algebraic properties of this multicomponent object that makes it a spinor.

In the case of Pauli's early phenomenological theory of spin, he developed spinors that had 2-complex components (just two complex numbers). These can be combined with spatial wave functions, as your own answer states, in a manner that is very clearly illustrated in Richard Fitzpatrick's article https://farside.ph.utexas.edu/teaching/qm/lectures/node51.html

So rather than ask "How ... spinors affect wave function solutions" it might be better to ask "what characterises a wave function solution as a spinor" (i.e. being components of a spinors doesn't change (affect) the spatial wave functions themselves, but rather associates them in such a way that the whole mathematical object is - has the properties of - a spinor.)

* OK - pedantic if you prefer
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top