How Does Changing Shape Affect Temperature and Ice Thickness Calculation?

  • Thread starter Thread starter Zekexx
  • Start date Start date
  • Tags Tags
    Heat
AI Thread Summary
The discussion revolves around two physics homework questions related to temperature and ice thickness calculations. In the first question, a solid sphere is melted and recast into a cube, requiring the calculation of the cube's temperature based on constant emissivity and radiant power. The second question involves determining how much a 0.454-meter thick ice sheet thickens under specific air temperature conditions, using heat flow equations. Participants provide equations and methods for solving these problems, with some clarification needed on the density equation. Overall, the thread emphasizes the application of thermal physics principles to solve real-world problems.
Zekexx
Messages
1
Reaction score
0

Homework Statement



Question 1: A solid sphere has a temperature of 873 K. The sphere is melted down and recast into a cube that has the same emissivity and emits the same radiant power as the sphere. What is the cube's temperature in Kelvin?

Questions 2: A 0.454-m-thick sheet of ice covers a lake. The air temperature at the ice surface is -13.4 °C. In 1.03 minutes, the ice thickens by a small amount. Assume that no heat flows from the ground below into the water and that the added ice is very thin compared to 0.454 m. Find the number of millimeters by which the ice thickens.


Homework Equations



Question 1 : We are to assume that the radius of the sphere is R and side length of the cube is L and that volume is kept constant so L = (4/3pi)^1/3R and Q/t cube = Q/t sphere the areas of and cue is 6L^2 and a sphere is 4piR^2

Question 2 : First we must find the amount of heat flow from Q=((KAT)t)/L now the A for this problem is 1 m^2 after Q is found we can use Q=ML to find mass and density = MV to find the volume.


The Attempt at a Solution


Question 1 : Since everytihng is read to be kept constant except for temperature and area can't we just condense so that T^4A = T^4A and than we can substitute in for L so that we get
873^4*4*pi*R^2 = T^4*6*(4/3pi)^2/3*R^2
this would allow our R's to cancel and then it is just algebra...is this right or am i missing something?

Question 2:
Q=((KAT)t)/L
Q=(2.2*1*13.4*(1.03*60))/.454

Q = ML
So Q/L=M

and Density = M*V

so Density/M = V

am i missing something in this part of the problem?

Thanks to any who answer
 
Physics news on Phys.org
Everything looks right except your equation for density. Think carefully about that one again.

p.s. Welcome to Physics Forums :smile:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top