VantagePoint72
- 820
- 34
I'm reading some course notes for a physics class that contain the following step in a derivation:
\phi(\vec{x}) = \int \frac{d^3k}{(2\pi)^3}\frac{e^{i\vec{k}\cdot\vec{x}}}{\vec{x}^2 + m^2}
Changing to polar coordinates, and writing \vec{k}\cdot\vec{x}=kr \cos\theta, we have:
\phi(\vec{x}) = \frac{1}{(2\pi)^2} \int_0^\infty dk \frac{k^2}{k^2 + m^2}\frac{2\sin kr}{kr}
I'm having a bit of difficulty seeing this step. Could someone please show some of the intermediate steps between these two and explain what's happening? I understand that k2 in the numerator comes from converting to spherical coordinates, but that's about all I follow.
\phi(\vec{x}) = \int \frac{d^3k}{(2\pi)^3}\frac{e^{i\vec{k}\cdot\vec{x}}}{\vec{x}^2 + m^2}
Changing to polar coordinates, and writing \vec{k}\cdot\vec{x}=kr \cos\theta, we have:
\phi(\vec{x}) = \frac{1}{(2\pi)^2} \int_0^\infty dk \frac{k^2}{k^2 + m^2}\frac{2\sin kr}{kr}
I'm having a bit of difficulty seeing this step. Could someone please show some of the intermediate steps between these two and explain what's happening? I understand that k2 in the numerator comes from converting to spherical coordinates, but that's about all I follow.