How Does Charge Buildup Affect Satellites in Earth's Radiation Belts?

  • Thread starter Thread starter Laxman2974
  • Start date Start date
  • Tags Tags
    Field Surface
AI Thread Summary
Charge buildup in satellites within Earth's radiation belts can lead to electronic damage and operational disruptions. A spherical satellite with a diameter of 0.9 m accumulates 2.2 µC of charge, prompting calculations for surface charge density and electric field strength. The surface charge density is derived from the total charge divided by the surface area of the sphere, not just the area of a circle. The correct surface area formula for a sphere must be applied to obtain accurate results. Understanding these calculations is crucial for mitigating the effects of charge buildup on satellite operations.
Laxman2974
Messages
15
Reaction score
0
Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge buildup can damage electronic components and disrupt operations. Suppose a spherical metallic satellite 0.9 m in diameter accumulates 2.2 µC of charge in one orbital revolution.
(a) Find the resulting surface charge density.
C/m2
(b) Calculate the magnitude of the electric field just outside the surface of the satellite, due to the surface charge.
N/C

Homework Equations


a. Looking at the units I need the answer in, I assumed that the surface charge density is charge/area or C/m^2.
for this problem that would be Q /(pie x r^2) or 2.2e^-6C / (pie x .45^2)

So I solved and got 2.2e-6/.6361725124 = 3.458e-6

This is not the right answer - I can't find part a which should be easy - a little help please.
 
Physics news on Phys.org
Laxman2974 said:
a. Looking at the units I need the answer in, I assumed that the surface charge density is charge/area or C/m^2.
for this problem that would be Q /(pie x r^2) or 2.2e^-6C / (pie x .45^2)

So I solved and got 2.2e-6/.6361725124 = 3.458e-6

This is not the right answer - I can't find part a which should be easy - a little help please.

The satellite is spherical in shape.

The area you have is the area of a circle, not the surface area of a sphere...
 
wow - thanks - I knew there was something obvious I was over looking
 
Laxman2974 said:
wow - thanks - I knew there was something obvious I was over looking

No problem. Glad I could help.:smile:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top