Petar Mali
- 283
- 0
Homework Statement
Circular plate radius R is uniformly charged and the charge of plate is Q. Find the electric field in arbitrary point perpendicular to the plate that passes through the center. Case R\rightarrow \infty compared with a score of Gaussian theorem.
Homework Equations
Gauss theorem
\int_S \vec{E}\cdot\vec{dS}=\frac{q}{\epsilon_0}
The Attempt at a Solution
I calculate first part of assignment.
\vec{E}_A=\frac{1}{4\pi\epsilon_0}\int_S\frac{\sigma dS}{r^3}\vec{r}
dS=\rho d\rho d\varphi
r=\sqrt{\rho^2+z^2}
\vec{r}=z\vec{e}_z-\rho\vec{e}_{\rho}
and get
\vec{E}_A=\frac{\sigma}{2\epsilon_0}\frac{z}{|z|}(1-cos\alpha_0)
When R\rightarrow \infty \alpha_0\rightarrow \frac{\pi}{2}
So when R\rightarrow \infty
\vec{E}_A=\frac{\sigma}{2\epsilon_0}sgnz \vec{e}_z
I don't know how can I do the second part with Gauss theorem? Thanks for your help!