How does gauge bundle breaking occur in Yang-Mills theory with SU(5)?

meha
Messages
6
Reaction score
0
Hello,
suppose you start with Yang Mills theory with some gauge group G, for example SU(5). Then you turn on a gauge bundle, say a U(1) bundle, and the group breaks down. I know that from hearsay but I wonder how would you describe that explicitly in formulas?
meha
 
Physics news on Phys.org
what du you mean by "turn on a gauge bundle"? you already have a SU(5) bundle, so whyt should U(1) be? U(1)*SU(5)?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top