How Does Gauss' Law Apply to Complex Cylindrical Charge Distributions?

AI Thread Summary
The discussion focuses on applying Gauss' Law to a complex cylindrical charge distribution involving an infinite line charge and multiple conducting shells. The calculated electric field at a distance of 10 cm from the z-axis is found to be 5.4 x 10^5 N/C, confirming the use of charge densities to determine the enclosed charge. For the induced surface charge on the outer surface of the inner conductor at 3 cm, the initial assumption was -3 µC/m, but it was later clarified that the charge must be +2 µC/m to maintain neutrality in the conducting shell. The participants engaged in verifying calculations and assumptions related to charge distribution and electric fields. Overall, the application of Gauss' Law and charge balancing principles were central to the discussion.
TwinGemini14
Messages
31
Reaction score
0
An infinite line charge lies on the z-axis with l = 2 µC/m. Coxaial with that line charge are: an infinite conducting shell (with no net charge) with thickness 1 cm and with inner radius 2 cm and outer radius 3 cm, an infinite shell with a radius of 4 cm and with a net charge of -5 µC/m, and another infinite conducting shell (with no net charge) with a thickness of 1 cm and with an inner radius of 5 cm and outer radius of 6 cm. A cross sectional view of this setup is shown below:

http://i662.photobucket.com/albums/uu347/TwinGemini14/elecshell.gif

-----------
4) Calculate the magnitude of the electric field at r = 10 cm from the z-axis.

A) 0 N/C
B) 1.15 x 10^5 N/C
C) 2.89 x 10^5 N/C
D) 4.22 x 10^5 N/C
E) 5.40 x 10^5 N/C

-------------
Since our cylinders have infinite length, I simply added the charge densities to get the charge enclosed by our cylinder.
So Q = (2 uC)*(-5 uC) = -3 uC.
Using Gauss' Law, EA = Q/(epsilon-not)
E = Q/(Epsilon-not * A)
E = (3*10^-6) / ((8.85*10^-12)*(2pi*0.1))
E = |-5.4*10^5| = 5.4*10^5 N/C

ANSWER = E
I believe I did this one correct, but could somebody double check please?
-----------
5) Calculate the induced surface charge per meter on the inner conductor's outer surface (at r = 3 cm).

A) -4 µC/m
B) -3 µC/m
C) 0 µC/m
D) +2 µC/m
E) +5 µC/m

----------
So I assumed this logic. Since the inner conductor's inner shell (2cm) must be -2 uC/m to balance the infinite line of charge. So then at the outer shell (3m), it must be -3 uC/m since at 4cm, the net charge is -5 uC. ANSWER = B.
---------------
Can somebody please help me with these problems? I'm not entirely sure and would appreciate the assistence. Thanks in advance!
 
Physics news on Phys.org
TwinGemini14 said:
-----------
4) Calculate the magnitude of the electric field at r = 10 cm from the z-axis.

A) 0 N/C
B) 1.15 x 10^5 N/C
C) 2.89 x 10^5 N/C
D) 4.22 x 10^5 N/C
E) 5.40 x 10^5 N/C

-------------
Since our cylinders have infinite length, I simply added the charge densities to get the charge enclosed by our cylinder.
So Q = (2 uC)*(-5 uC) = -3 uC.
Using Gauss' Law, EA = Q/(epsilon-not)
E = Q/(Epsilon-not * A)
E = (3*10^-6) / ((8.85*10^-12)*(2pi*0.1))
E = |-5.4*10^5| = 5.4*10^5 N/C

ANSWER = E
I believe I did this one correct, but could somebody double check please?
Looks good.

-----------
5) Calculate the induced surface charge per meter on the inner conductor's outer surface (at r = 3 cm).

A) -4 µC/m
B) -3 µC/m
C) 0 µC/m
D) +2 µC/m
E) +5 µC/m

----------
So I assumed this logic. Since the inner conductor's inner shell (2cm) must be -2 uC/m to balance the infinite line of charge.
Good! Since you know the net charge on the conducting shell is zero, what must be the induced charge on the outer surface?
So then at the outer shell (3m), it must be -3 uC/m since at 4cm, the net charge is -5 uC. ANSWER = B.
Does a charge at r = 4 cm have any impact on anything going on at r = 3 cm?
 
So then if the charge at 2cm is -2 uC/m, then at 3cm, it must be +2 uC/m since the charge between 2cm and 3cm must be zero.

Right?

So the answer is D.
 
Right!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top