Q-reeus said:
But anything like big enough? I must be missing something basic here, because we all agree shell stresses are utterly minute compared to matter in gross effect. The exterior SM, and interior MM level, owe essentially exclusively to the matter contribution, and shell geometry. Nothing else. Microscopic effects of stress cannot be doing much, regardless of how they 'point', surely!
I think I see an actual question about physics here, but you are making it far more complicated than it needs to be by mixing in coordinate-dependent concepts. See below.
Q-reeus said:
I can only conclude, since all of you insist there is no vast order of magnitude chasm to ford here, that a changing K vs J in shell wall is some kind of mirage, a mathematical artefact of coordinate system.
No, it isn't, if by K and J you mean those terms as I defined them. I specifically defined them as physical observables, so a change in their relationship is likewise a physical observable. See below.
Q-reeus said:
1: What SC's are really saying about SM. On a straight reading of the standard SC's...
Here is the problem. As I acknowledged above, you are asking a legitimate question about the physics, but you keep on thinking about it, and talking about it, in terms of things that are coordinate-dependent, which makes it very difficult to discern exactly what you are asking. The metric coefficients in Schwarzschild coordinates are *only* applicable to Schwarzschild coordinates; they don't tell you anything directly about the physics. The physics is entirely summed up in terms of the two observables, K and J, that I defined, and everything can be talked about without talking about coordinates at all.
Here's the actual physical question I think you are asking; I'll take it in steps.
(1) We have two observables, K and J, defined as follows: J is the "redshift factor" (where J = 1 at infinity and J < 1 inside a gravity well), and K is the "non-Euclideanness" of space (where K = 1 at infinity and K > 1 in the exterior Schwarzschild vacuum region).
(2) These two observables have a specific relationship in the exterior vacuum region: J = 1/K.
(3) We also have an interior vacuum region in which space is Euclidean, i.e., K = 1. However, J < 1 in this region because there is a redshift compared to infinity.
(4) Therefore, the non-vacuum "shell" region must do something to break the relationship between J and K. The question is, how does it do this?
(5) The answer DaleSpam and I have given is that, in the non-vacuum region, where the stress-energy tensor is not zero, J is affected by the time components of that tensor, while K is affected by the space components. Put another way, J is affected by the energy density--more precisely, by the energy density that is "inside" the point where J is being evaluated. K, however, is affected by the pressure.
(6) Your response is that, while this answer seems to work for J, it can't work for K, because K has to change all the way from its value at the outer surface of the shell, which is 1/J, to 1 at the inner surface. Since J at the outer surface is
apparently governed by the energy density, and the change in K to bring it back to 1 at the inner surface must be of the same order of magnitude as the value of J at the outer surface, it would seem that whatever is causing that change in K must be of the same order of magnitude as the energy density. And the pressure is much, much smaller than the energy density, so it can't be causing the change.
Now that I've laid out your objection clearly and in purely physical terms, without any coordinate-dependent stuff in the way, it's easy to see what's mistaken about it. You'll notice that I bolded the word
apparently. In fact, the value of J at the outer surface of the shell is *not* governed by the shell's energy density; J (or more precisely the *change* in J) is only governed by the shell's energy density *inside* the shell. At the outer surface, because of the boundary condition there, the value of J is governed by the ratio of the shell's total mass to its radius, in geometric units (or, equivalently, by the ratio of its Schwarzschild radius to its actual radius). And if you look at what I posted before, you will see that the pressure inside the shell is of the *same* order of magnitude as the ratio of the shell's mass, in geometric units, to its radius. So the pressure inside the shell is of just the right size to change K from 1/J at the outer surface of the shell, back to 1 at the inner surface of the shell.