Q-reeus said:
Seemed self-evident that hoop is not torus, that hoop as defined perimeter, sits on a surface, and one proceeds to fill the enclosed area with marbles. And that the count will be a function of surface curvature.
Yes, but as I pointed out, to calculate the count, you need to know the K factor for a whole range of "r" values, from r = 0 out to the "r" of the hoop, which is its circumference divided by 2 pi. This brings in additional complications which are not present if you consider the area between two nearby circles of circumference C and C + dC.
Q-reeus said:
Deary me - should have just gone straight to DrGreg's use of area vs circumference. But one still needed something like 'marble count' to get it that the ratio was changing with changed surface curvature - and most importantly - it will physically manifest (gaps opening up between marbles).
Huh? Where has anyone said anything about gaps between marbles? I thought it was understood through all of this that we are packing whatever area (or volume) we're concerned with as tightly as possible with the marbles (or whatever small identical objects we are using). DrGreg even said so explicitly. If you don't do that, how can you possibly get reliable measurements?
Q-reeus said:
And ergo - go 3D and fluid level in a container responds to changed 3-curvature.
Still an issue here--see below.
Q-reeus said:
And despite what I've heard, seems natural to interpret K as the contraction ratio ∂'r'/∂r, 'r' being the radius in coordinate measure.
You have the ratio upside down. If we use s for "physical" distance measure and r for coordinate measure, then K is ds/dr. Or, if we use the definition of the r coordinate we've been using, K is ds/dsqrt(A), where A is the area of the 2-sphere at coordinate r. So K > 1 means an increase in how much actual distance s corresponds to a unit of coordinate r.
Q-reeus said:
"Thought I had it conceptually pinned down there. Do we agree that if K factor applies to excess volume between complete concentric shells, it must apply to partitioned portions. Apply a soccer-ball style tesselation over shell surface and cut through radially at the boundaries.That defines intimately joined volume segments. An observer in each segment does a count. How could the excess count by each observer not add to give just that for the whole shells?
It does, as long as we're packing marbles correctly, or the equivalent with tesselations. But that does *not* imply the following:
Q-reeus said:
Ergo - there is an non-euclidean effect observable in a 'container'. No?!"
No.
Q-reeus said:
I can conceive no way around that. How can there be?
Because you are not correctly analyzing the physics of the container. Let's consider that example in more detail.
Suppose I have a cubical container with side length s; that is, when I measure its sides in some region of spacetime far away from all gravitating bodies, I measure each side to be identical in length, and the side length to be s. Now I take this container and lower it to some radial coordinate r above a gravitating body, where r is such that the K factor is measurably greater than 1. What will the container look like when I measure its sides again?
The answer is clear from what I've already said: the container will still be cubical, and its side lengths will still be s. The K factor has no observable effect on the size of the container, because K does not cause any stress on objects.
However, now consider the following experiment: I take my container, in a region of spacetime far from all gravitating bodies, and I sandwich it between two concentric 2-spheres, with the areas A and A + dA of the spheres chosen such that two opposite faces of the container are just tangent to the two spheres. I ask, what is the relationship between the side length s of the container and the area A of the inner sphere? The answer is, it is the relationship which Euclidean geometry predicts. In other words, the K factor here is 1.
Now I lower the container to a radial coordinate r above a gravitating body, such that the area A corresponding to r (A = 4 pi r^2) is *exactly* the same as the area A of the inner sphere I used above. In other words, the "bottom" surface of the container is now tangent to the sphere with radius A, exactly as it was when everything was far away from all gravitating bodies. I now ask: if I consider a second sphere of area A + dA in this situation, where dA is exactly the same dA I used above, will the "top" surface of the container be tangent to that sphere? The answer is *no*: the container's top surface will not quite reach the second sphere, because the side length s of the container, which is unchanged, is now not quite as long as the distance between the two spheres, because the K factor is now greater than 1. That is what I mean by saying that there is "more distance" between the spheres than there would be if the space geometry were Euclidean, but the size of a given unit of distance, such as the container side length s, is unchanged.
Note, please, that this is *not* saying that K is not physically observable. The failure of the top surface of the container to reach the second sphere is a physical observable--it's direct physical evidence of the K factor being greater than 1. It may not be the evidence your intuition was expecting, but it's certainly evidence.