How Does Mathematical Theory Explain Multiple Wave Reflections?

Click For Summary

Homework Help Overview

The discussion revolves around the mathematical theory explaining multiple wave reflections, particularly in the context of wave equations and boundary conditions. Participants are analyzing the expressions for reflected and transmitted waves at different interfaces, focusing on the relationships between reflection and transmission coefficients.

Discussion Character

  • Mathematical reasoning, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants explore the derivation of the reflection coefficient, questioning the accuracy of the expressions and the steps taken in the derivation. There are discussions about factoring terms correctly and identifying potential typos in the equations presented.

Discussion Status

Several participants have provided insights into the derivation process, pointing out specific areas where mistakes may have occurred. There is an ongoing examination of the relationships between the transmission and reflection coefficients, with some participants suggesting that these relationships could lead to a simplification of the final expression.

Contextual Notes

Participants are working under the constraints of homework guidelines, which may limit the amount of direct assistance they can provide. There are references to specific mathematical relationships that need to be understood to progress in the discussion.

Redwaves
Messages
134
Reaction score
7
Homework Statement
Impedance ##Z_1, Z_3## are separated by ##Z_2## with a thickness ##L##.
##\psi_r = R\psi_i##
Show that the global reflection is ##R = \frac{R_{12} + R_{23}e^{-i2\omega L/v_2} }{ 1 + R_{12}R_{23}e^{-i2\omega L/v_2}}##
Relevant Equations
##R_{12}## means the wave is reflected at the boundary between 1 and 2, moving from 1 to 2.
I know for a wave moving from left to right, ##\psi_i = Ae^{i(\omega t - k_1x)}##

The first reflection where ##Z_1## is ## R_{12}Ae^{i(\omega t - k_1x)}##

The second reflection. The wave moves from 2 to the limit between 2 and 3 then reflect...
Thus, ##T_{12}R_{23}T_{21} Ae^{i(\omega t - k_1 x - 2k_2 L)}##. Where ##L = \frac{\lambda_2}{4}## and ##\lambda_2 = \frac{2\pi}{k_2}## so ##2k_2 L = \pi##

The third time the wave comes to ##Z_1##. ##T_{12}R_{23}R_{21}R_{23}T_{21}e^{i(\omega t - k_1 x -i4k_2L)}##

We have ##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L} + T_{12}R_{23}R_{21}R_{23}T_{21}e^{-i4k_2 L} + ...##

##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L}(1 + R_{23}R_{21}e^{-i2k_2 L})##

##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L} \sum_{n=0}^{\infty} (R_{23}R_{21}e^{-i2k_2 L})^n##

##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L} \sum_{n=0}^{\infty} (-R_{23}R_{12}e^{-i2k_2 L})^n##

Using the geometric series

##R = \frac{R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L}}{1 + R_{23}R_{12}e^{-i2k_2 L}}##

The dominator is right, but not the numerator. I really don't see where I made a mistake.
 
Last edited:
Physics news on Phys.org
Redwaves said:
We have ##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L} + T_{12}R_{23}R_{21}R_{23}T_{21}e^{-i4k_2 L} + ...##

##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L}(1 + R_{23}T_{21}e^{-i2k_2 L})##
There is a mistake in going from the first line to the second line where you factored out ##T_{12}R_{23}T_{21}e^{-i2k_2 L}##. Check the last term in the parentheses in the second line.
 
TSny said:
There is a mistake in going from the first line to the second line where you factored out ##T_{12}R_{23}T_{21}e^{-i2k_2 L}##. Check the last term in the parentheses in the second line.
It's a typo, I have ##R_{21}R_{23}## on my sheet. For some reason, I don't have any more preview while I type. It's the second term that shouldn't have the T's
 
Redwaves said:
##R = R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L} \sum_{n=0}^{\infty} (-R_{23}R_{12}e^{-i2k_2 L})^n##
This looks good.

Redwaves said:
Using the geometric series

##R = \frac{R_{12} + T_{12}R_{23}T_{21}e^{-i2k_2 L}}{1 + R_{23}R_{12}e^{-i2k_2 L}}##

The dominator is right, but not the numerator. I really don't see where I made a mistake.
Shouldn't this be $$R = R_{12} + \frac{T_{12}R_{23}T_{21}e^{-i2k_2 L}}{1 + R_{23}R_{12}e^{-i2k_2 L}}$$
You should be able to reduce this to the result stated in the problem. You will need to know the relation between ##T_{12}## and ##T_{21}## and the relation between ##T_{12}^2## and ##R_{12}^2##. [EDIT: I should have said that you need the relation between ##T_{12}T_{21}## and ##R_{12}^2##]
 
Last edited:
I don't know if that is what you mean.
##T_{12} = 1 + R_{12}, T_{21} = 1 + R_{21} = 1 - R_{12}##
However, I have ##1 - R_{12}^2##
 
Redwaves said:
##T_{12} = 1 + R_{12}, T_{21} = 1 + R_{21} = 1 - R_{12}##

Using these relations, what do you get for ##T_{12}T_{21}## expressed in terms of ##R_{12}##?
 
I get 1 - ##R_{12}^2##
 
Redwaves said:
I get 1 - ##R_{12}^2##
OK.

Using ##T_{12}T_{21} = 1-R_{12}^2## you should be able to reduce ##R = R_{12} + \large \frac{T_{12}R_{23}T_{21}e^{-i2k_2 L}}{1 + R_{23}R_{12}e^{-i2k_2 L}}## to the desired result.
 
  • Like
Likes   Reactions: Redwaves
Thanks! My issue was that I had put##R_{12}## on the same denominator right after the geometric series.
 

Similar threads

Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K