How Does Particle Energy Affect Wave Functions Across a Potential Step?

  • Thread starter Thread starter omiros
  • Start date Start date
  • Tags Tags
    Particle
omiros
Messages
29
Reaction score
0

Homework Statement


A particle with mass m moving in the positive x -direction (i.e. from left to right) is incident on a potential step of height V0 at x = 0 so that the potential experienced by the particle is;
V(x) = 0 for x < 0 and V(x) = V0 for x ≥ 0

Homework Equations



Determine the time-independent wave function for the particle in the case where the particle energy, E, is greater than V0. This case corresponds to the solution for an ‘unbound’ particle (E > V0). Write your wave functions using complex notation; let the amplitudes of the incident, reflected and transmitted waves be CI, CR and
CT respectively. Define the wavenumber, k, in the region x < 0 and the wavenumber
k' in the region x ≥ 0 .

The Attempt at a Solution


ψ(x) = CI*eikx + CR*e-ikx for x < 0 (is probably the first part of the equation).

My main problem is what to do with the second one, as the particle is constantly 'under the influence' of the potential V0 and at the same time I have to find CT when the wave has not been exactly transmitted so the equation can't just be CT*eikx(in my point of view)
 
Physics news on Phys.org
you are right for the case x<0. And for the case x>0, yes, the particle is essentially in a constant potential V0. In the region x>0, the particle has been transmitted. True, the equation is not CT*eikx. Try using the Schrodinger equation to find what the wavefunction should look like for x>0.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top