How Does Proof by Contradiction Validate a/b + b/a >= 2?

chan8366
Messages
3
Reaction score
0
[SOLVED] basic math proof by contradiction

Homework Statement



prove: If a and b are positive numbers, a/b +b/a>=2

Homework Equations





The Attempt at a Solution



by contradiction (a^2+b^2)/ab<2 and got lost
 
Physics news on Phys.org
If (a^2+b^2)/ab<2 then a^2+b^2<2ab. So a^2+b^2-2ab<0. But a^2+b^2-2ab=(a-b)^2<0. What could be wrong with that?
 
thanks it was that easy
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top