I How Does Scaling Affect the Coordinates of a Rectangle in the Plane?

  • I
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Plane Scaling Set
Mr Davis 97
Messages
1,461
Reaction score
44
This is a pretty simple question, I am just trying to clear up confusion. Let ##D## be the rectangle in the plane with vertices ##(-1,0),(-1,1),(1,1),(1,0)##. Let ##\lambda >0##. Then what exactly does the set ##\lambda D## look like? Is it correct to say that, for example, ##2D## is the rectangle with vertices ##(-2,0),(-2,2),(2,2),(2,0)##?
 
Mathematics news on Phys.org
Mr Davis 97 said:
This is a pretty simple question, I am just trying to clear up confusion. Let ##D## be the rectangle in the plane with vertices ##(-1,0),(-1,1),(1,1),(1,0)##. Let ##\lambda >0##. Then what exactly does the set ##\lambda D## look like? Is it correct to say that, for example, ##2D## is the rectangle with vertices ##(-2,0),(-2,2),(2,2),(2,0)##?
Your interpretation seems reasonable to me, although I've never run into any other situations where a set was multiplied by a number.
 
  • Like
Likes Mr Davis 97
Mark44 said:
Your interpretation seems reasonable to me, although I've never run into any other situations where a set was multiplied by a number.

The concept of cosets in group theory is the first thing that comes to mind.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top