How Does Tension Affect the Frequency of Standing Waves?

AI Thread Summary
The discussion focuses on the relationship between tension in a string and the frequency of standing waves. A mass hung from a string connected to a vibrator creates standing waves at specific masses (16.5 kg and 22.5 kg), with no standing waves observed for masses in between. The equations provided relate frequency to tension and linear mass density, but the initial calculations yield incorrect results due to the assumption of a constant fundamental frequency across different tensions. Participants suggest deriving the wavelength for both mass scenarios to accurately determine the fundamental frequency and the largest mass for observable standing waves. The conversation emphasizes the importance of understanding how varying tension affects wave behavior in the system.
tomasblender
Messages
3
Reaction score
0

Homework Statement



In the arrangement shown in the figure, a mass can be hung from a string (with a linear mass density of μ=0.00182 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L=1.95 m. When the mass m is either 16.5 kg or 22.5 kg, standing waves are observed; however no standing waves are observed with any mass between these values.

http://capa.physics.mcmaster.ca/figures/sb/Graph18/sb-pic1825.png

What is the frequency of the vibrator? (Hint: The greater the tension in the string the smaller the number of nodes in the standing wave.)

What is the largest mass for which standing waves could be observed?

Homework Equations



f(m) = mf1
f = (T/u)^.5/2L


The Attempt at a Solution



(16.5*9.8/0.00182)^.5/(2*1.95) = 79.249 Hz = (m + 1)f
(22.5*9.8/0.00182)^.5/(2*1.95) = 89.249 Hz = (m) f

Therefore

79.249 - 89.249 = mf + f - mf
10.000 Hz
Which is the incorrect answer.

would be

(mg/u)^.5/2L = Answer for part A
("a"^2)*(2L^2)*u/g = m

I cannot test if this is the answer without having the answer for the first section. Anyways I am dry out of ideas for part A, any help?
 
Last edited by a moderator:
Physics news on Phys.org
tomasblender said:
f(m) = mf1
f = (T/u)^.5/2L

The Attempt at a Solution



(16.5*9.8/0.00182)^.5/(2*1.95) = 79.249 Hz = (m + 1)f
(22.5*9.8/0.00182)^.5/(2*1.95) = 89.249 Hz = (m) f

You assumed that the fundamental frequency is the same in both scenarios. That's not true, since the tensions are different, resulting in different fundamental frequencies.

Try writing out the wavelength for both cases as a function of m, u, and f. Also write out the wavelength in terms of L and n1/n2 (representing the n1/n2th harmonic). Then you'll be able to find n1 and n2, which will tell you f.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top