Petar Mali
- 283
- 0
\hat{H}_{BCS}=\sum_{\vec{p},\sigma}\epsilon(\vec{p})\hat{a}^+_{\vec{p},\sigma}\hat{a}_{\vec{p},\sigma}+\sum_{\vec{p},\vec{p}'}V(\vec{p},\vec{p}')\hat{a}^+_{\vec{p}\uparrow}\hat{a}^+_{-\vec{p}\downarrow}\hat{a}_{-\vec{p}'\downarrow}\hat{a}_{\vec{p}'\uparrow}
What is the meaning of the terms \hat{a}^+_{\vec{p}\uparrow},\hat{a}^+_{-\vec{p}\downarrow}... ?
If I work mean- field approximation
\hat{H}_{BCS}=\hat{H}_0+\hat{H}_2+\delta\hat{H}
What is the procedure to find terms \hat{H}_0, \hat{H}_2, \delta\hat{H}?
What is the meaning of the terms \hat{a}^+_{\vec{p}\uparrow},\hat{a}^+_{-\vec{p}\downarrow}... ?
If I work mean- field approximation
\hat{H}_{BCS}=\hat{H}_0+\hat{H}_2+\delta\hat{H}
What is the procedure to find terms \hat{H}_0, \hat{H}_2, \delta\hat{H}?