laleler1
- 1
- 0
Homework Statement
for n=1,2,3,... , evaluate the integral,
I= \int_C\frac{e^{iz}}{z^n}dz
where C is a curve like z(t)=e^{it} and 0 \leq t \leq 2\Pi
Homework Equations
The Attempt at a Solution
I tried to use Cauchy integral formula; that
f^{(n)}(z)=\frac{n!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n+1}}d\zeta
then we can obtain,
f^{(n-1)}(z)=\frac{(n-1)!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n}}d\zeta
f^{(n-1)}(z)=\frac{(n-1)!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n}}d\zeta
(e^{iz})^{(n-1)}(z) \Big\vert_{z=0}=\frac{(n-1)!}{2 \Pi i}\int_C\frac{e^{iz}}{z^{n}}d\zeta
i^{n-1}=\frac{(n-1)!}{2 \Pi i}\int_C\frac{e^{iz}}{z^{n}}d\zeta
\int_C\frac{e^{iz}}{z^{n}}d\zeta=\frac{i^{n-1} 2 \Pi i} {(n-1)!}
~~~~~~~~=\frac{i^n 2 \Pi} {(n-1)!} .
can you check, is it right?