How Does the Constant Gradient Condition Affect Solutions to the Wave Equation?

  • Thread starter Thread starter chaotixmonjuish
  • Start date Start date
  • Tags Tags
    Wave Wave equation
chaotixmonjuish
Messages
284
Reaction score
0
Let u be a solution of the wave equation utt-uxx=0 on the whole plane. Suppose that ux(x,t) is a constant on the line x=1+t. Assume that u(x,0)=1 for all x in R and u(1,1,)=3. Find such a solution u.

I need help trying to incorporate the ux(x,t) is a constant on the line x=1+t
 
Physics news on Phys.org
So I got this as a solution by plugging it into an equation for wave equations with a Neumann condition:

u(x,t)= t+1/2(4t+2t^2) x>0

u(x,t)= t+1/2(3/2+5t+3t^2/2) 0<x<t
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top