How Does the Electromagnetic Wave Equation Validate Given Solutions?

rmjmu507
Messages
34
Reaction score
0

Homework Statement


Show that the solution \textbf{E}=E(y,z)\textbf{n}\cos(\omega t-k_xx) substituted into the wave equation yields

\frac{\partial^2 E(y,z)}{\partial y^2}+\frac{\partial^2 E(y,z)}{\partial z^2}=-k^2E(y,z)

where k^2=\frac{\omega^2}{c^2}-k_x^2

Homework Equations


See above.

The Attempt at a Solution


I plugged the given solution into \frac{\partial^2 \textbf{E}}{\partial y^2}+\frac{\partial^2 \textbf{E}}{\partial z^2}=\frac{1}{c^2}\frac{\partial^2 \textbf{E}}{\partial t^2} and got:

\textbf{n}\cos(\omega t-k_xx)[\frac{\partial^2 E(y,z)}{\partial y^2}+\frac{\partial^2 E(y,z)}{\partial z^2}]=-\frac{\omega^2}{c^2}E(y,z)\textbf{n}\cos(\omega t-k_xx)

Now, canceling like terms I get:

\frac{\partial^2 E(y,z)}{\partial y^2}+\frac{\partial^2 E(y,z)}{\partial z^2}=-\frac{\omega^2}{c^2}E(y,z)

But I'm missing a k_x^2 term on the RHS, and cannot figure out where this could/would have come from...can someone please explain?
 
Physics news on Phys.org
I was able to get the k_x^2 term by determining \nabla^2\textbf{E} and rearranging, thus obtaining the desired relation.

However, I'm not entirely sure why it's necessary to determine \nabla^2. Can someone please explain this to be?
 
You had to evaluate the ##\nabla^2## operator because that is the definition of the wave function. ## \nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial t^2}## Adding an ##x## dependence into your function for ##\vec{E}## meant you had to fully evaluate the Laplacian.
 
I see...I was considering this equation as only a two-dimensional one...for some reason I was overlooking the x component in the cosine function. Not entirely sure why, perhaps because of the E(y,z) term, but I now realize this is simply a coefficient corresponding to the amplitude.

Thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top