How Does the Expectation Value Simplify to iCm/(pi*hbar)^1/2?

Skullmonkee
Messages
22
Reaction score
0
Just a quick question.
I finished an expectation value sum and noticed that the given solution had me stumped.
Ive attached a quick picture of the simplifying process which was given as the solution.

The only thing i don't understand is how to get the value iCm/(pi*hbar)^1/2.
I don't know how it simplifies to that as i get another answer. You'll have to have a look at the attached picture to see what i mean.
Any help would be appreciated.
Thanks.
 

Attachments

  • Problem.jpg
    Problem.jpg
    15.8 KB · Views: 432
Physics news on Phys.org
The first factor underlined in red comes from the two factors of
\left( \frac{\sqrt{C m}}{\pi \hbar} \right)^{1/4}
on the top line, which are - IIRC - from the normalisation of your wave function.
The second factor in red comes from the -i\hbar in front of the d/dx, combined with the 2 \left( \sqrt{C m}/(2 \hbar) \right) which comes down from the exponential when you apply the d/dx.

In the third red underlined term, I suspect that instead of C m there should be (C m)^(3/4). Because if you let k = sqrt(C m) you have a sqrt(k) multiplied by k, which gives k^(3/2), i.e. ((C m)^(1/2))^(3/2) = (C m)^(3/4).
 
Thanks CompuChip

That was my thought exactly. I could not see how there was not a (C m)^(3/4) term. At least i was on the ball there. I suppose that the solution which was given (the working i showed in the pic) is just wrong then?
 
The mistake is at the beginning. The 1/4 should be 1/2 for correct normalization.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top