How Does the Isomorphism Between Z_k and Aut(Z_n) Work?

Artusartos
Messages
236
Reaction score
0
I was a bit confused the last paragraph before "Corollary 4.6.4". It says that we have the isomorphism \alpha : Z_k \rightarrow Aut(Z_n) but then says that \alpha(a^j)(b^i)=b^{m^ji}.

In a regular function f: X \rightarrow Y, we take one element from X and end up with an element in Y, right? But in this isomorphism, we take two elements a^j and b^i (and b^i is not even necessarily in Z_k). and end up with an element in Z^x_n. So how can that happen with a function?

Thanks in advance.
 

Attachments

  • Steinberger 112.jpg
    Steinberger 112.jpg
    59.4 KB · Views: 448
  • Steinberger 112 (2).jpg
    Steinberger 112 (2).jpg
    58.5 KB · Views: 471
Last edited:
Physics news on Phys.org
Hello,

Your alpha function sends elements from Z_k to the automorphisms of Z_n. This means that for every element a of Z_k alpha applied to a is a function from Z_n to Z_n. So alpha is an isomorphism and the formula gives you a description of the image of a^j under this isomorphism namely exactly that function that sends b^i to B^(bladiebla). The only obstacle here is to keep track of where elements are going alpha is a perfectly fine map and so is alpha(a).
 
conquest said:
Hello,

Your alpha function sends elements from Z_k to the automorphisms of Z_n. This means that for every element a of Z_k alpha applied to a is a function from Z_n to Z_n. So alpha is an isomorphism and the formula gives you a description of the image of a^j under this isomorphism namely exactly that function that sends b^i to B^(bladiebla).


The only obstacle here is to keep track of where elements are going alpha is a perfectly fine map and so is alpha(a).

Thank you.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top