MHB How Does the Order of μ Affect the Height Function h(μ)?

  • Thread starter Thread starter ra_forever8
  • Start date Start date
  • Tags Tags
    Estimate
AI Thread Summary
The discussion focuses on the non-dimensional differential equation for the height function h(μ) given by h(μ) = (1/μ) - (1/μ²) log_e(1+μ) for small values of μ. A Taylor expansion of log_e(1+μ) leads to an estimation of h(μ) as approximately 1/2 + O(μ). The comparison with the time function t_h(μ) = 1 - (μ/2) + O(μ) indicates that for small μ, the maximum height h approaches 1/2, occurring at a time t close to 1. The key takeaway is that the order of μ significantly influences the behavior of the height function, particularly in the limit as μ approaches zero. Thus, h(μ) can be effectively approximated in this regime.
ra_forever8
Messages
106
Reaction score
0
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.
 
Mathematics news on Phys.org
grandy said:
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.

Start with a Taylor expansion...
 
I like Serena said:
Start with a Taylor expansion...
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$
now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?
 
Last edited by a moderator:
grandy said:
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$

The problem asked for $h(\mu)$ up to $O(\mu)$, so that would be:
$$h(\mu) = \frac 1 2 + O(\mu)$$

now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?

The time is $t_h(\mu) = 1 + O(\mu)$.
So with small enough $\mu$ the maximum height is approximately $h \approx \dfrac 1 2$ which is reached at a time of approximately $t \approx 1$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
0
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
9
Views
1K
Back
Top