MHB How Does the Order of μ Affect the Height Function h(μ)?

  • Thread starter Thread starter ra_forever8
  • Start date Start date
  • Tags Tags
    Estimate
ra_forever8
Messages
106
Reaction score
0
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.
 
Mathematics news on Phys.org
grandy said:
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.

Start with a Taylor expansion...
 
I like Serena said:
Start with a Taylor expansion...
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$
now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?
 
Last edited by a moderator:
grandy said:
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$

The problem asked for $h(\mu)$ up to $O(\mu)$, so that would be:
$$h(\mu) = \frac 1 2 + O(\mu)$$

now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?

The time is $t_h(\mu) = 1 + O(\mu)$.
So with small enough $\mu$ the maximum height is approximately $h \approx \dfrac 1 2$ which is reached at a time of approximately $t \approx 1$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
0
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
9
Views
1K
Back
Top