Rap said:
I also have trouble intuitively understanding dU=(kT)dH (assuming constant volume and number of particles). I have trouble understanding the meaning of (kT) in this formulation, how the amount of missing information yields the internal energy.
The way I see it, it's not that the missing information yields the internal energy, it is that the former is how we can understand the presence of the latter. The fundamental rule is that missing information can be cast in terms of a number of equally likely states, the counting of which quantifies the missing information, as you so clearly explained. But the number of equally likely states also connects with the likelihood the system will find itself in that class of states, and that in turn connects with the affinity of a system to draw energy from a reservoir.
It is the reservoir, not the system, that brings in the concept of kT-- kT means the energy that the reservoir "covets." By that I mean, if you add kT of energy to a reservoir, you increase by e the number of equally likely states that the reservoir has access to. This is really the meaning of T. Interestingly, it doesn't matter how big the reservoir is-- a lump of coal or a planet, if both are at 1000 K, will "covet" the same energy kT, and will both have their number of states multiplied by e if they get kT of energy. So given that reservoirs covet energy in this sense, they are also loathe to part with it, but they can be coaxed into parting with kT of energy if some other system can have its number of accessible states increase by more than the factor e by receiving that energy.
The net result will be an increase in the number of accessible states for the combined system, and so by sheer probability, this is more likely to happen. Heat will continue to cross out of the reservoir and into the system until the next kT of energy only increases the number of states in the system by the factor e (or more correctly, the next dQ increases the number of states by only the factor 1+dQ/kT), at which point we have equilibrium because the number of total states cannot be increased any more (nor can the entropy, as you point out). So what this all means is, there is a connection between the number of questions you need to ask to pinpoint the particular state of the system out of the full class it might be in, and the fact that a big full class has a proportionately high probability of being belonged to. The place where the internal energy comes in is that the more states the system can gain access to, the better it is at drawing energy from the reservoir, to maximize the total number of combined states, and thus also maximizing the number of questions you'd need to answer to cull out the actual state from the class of possibilities.
I mean if H is the number of yes/no questions, then kT is the energy per question. I'm having trouble with that.
I hope you now see that the reason for this is that each question you need to answer represents the presence of states that perfectly offset the loss of those states by the reservoir when it loses its "coveted" energy (the total number of states being the product, not the sum, of possible states in each component). So it's all about maximizing the combined number of states that the full system+reservoir has access to. The reason I said it depends on what we know, rather than something physical outside of us, is that the actual state of the combined system is always just one thing-- it is only how we classify it and group it with indistinguishably similar states that we come upon the concept of entropy and the concept of probability of belonbing to that classification group. But you're right, the energy is there, that much is physical-- it is the explanation for why that energy is there that depends on how we classify things. The "real physical reason" the energy is there must depend on microphysics that we are simply not tracking, not on entropy. But the entropy is a story we can tell, based on what we are tracking, that can be used to determine how much energy will come across from the reservoir, via microphysics that is not in our story but is the real physical reason for that energy being there (if there is such a thing as a real physical reason).