How Does Topological Action Simplify with Levi-Civita Tensor Contractions?

  • Thread starter Thread starter jinbaw
  • Start date Start date
  • Tags Tags
    Topological
jinbaw
Messages
65
Reaction score
0
I'm trying to simplify an action that has the term: levicivita_[a,b,c,d]*levicivita^[mu,nu,rho,sigma]*R^[a,b]_[mu,nu]*R^[c,d]_[rho,sigma]

where a,b,c, and d are flat indices and mu nu rho sigma are curved indices

I got the term: 4*e^mu_a*e^nu_b*e^rho_c*e^sigma_d*R^a,b_mu,nu*R^c,d_rho,sigma

My question is if i have for example a=c levicivita_[a,b,c,d] is 0. however if i have a =c and mu=rho in the answer i got... i won't get a zero. is there some wrong in my computations? thank you
 
Physics news on Phys.org
I think the magic is that, for instance, 4{R^{12}}_{12}{R^{12}}_{12} indeed appears in your term, but it will also appear in those five other terms that you call "permutations" - and they will cancel out. The point of your expansion is to get nice contractions in the formulas, but it is not computationally optimal in the sense that there will be many cancellations of terms. In other words: you are adding and subtracting the same terms in order to get certain nice expressions like square of the scalar curvature etc.

Does it make sense?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top