MHB How Far Does a Bouncing Ball Travel Before Stopping?

AI Thread Summary
A ball dropped from a height of 270 m rebounds to 10% of its previous height with each bounce. The total vertical distance traveled by the ball before coming to rest is calculated using a geometric series. The formula derived shows that the total distance is 330 m. This includes the initial drop and all subsequent rebounds. The calculations confirm that the answer of 330 m is correct.
Starkiller2301
Messages
2
Reaction score
0
Hi everybody, can you please help me with this question and with the working out?

A ball was dropped from a height of 270 m. On each rebound, it rose to 10% of the previous height. Find the total vertical distance traveled by the ball before coming to rest.
Thanks,
Starkiller2301
 
Mathematics news on Phys.org
Hello, Starkiller2301!

A ball was dropped from a height of 270 m.
On each rebound, it rose to 10% of the previous height.
Find the total vertical distance traveled by the ball before coming to rest.
Let x = original height.

First, the ball falls x meters.

It bounces up \tfrac{x}{10} m, and falls \tfrac{x}{10} m.
It bounces up \tfrac{x}{10^2} m, and falls \tfrac{x}{10^2} m.
It bounces up \tfrac{x}{10^3}\,m, and falls \tfrac{x}{10^3}\,m.
And so on.Total distance:

\quad d \;=\;x + 2(\tfrac{x}{10}) + 2(\tfrac{x}{10^2}) + 2(\tfrac{x}{10^3}) \cdots

\quad d \;=\;x\left[1 + \tfrac{2}{10}\underbrace{\left(1 + \tfrac{1}{10} + \tfrac{1}{10^2} +\tfrac{1}{10^3} + \cdots \right)}_{\text{geometric series}} \right]

The geometric series has sum \frac{1}{1-\frac{1}{10}} \:=\: \frac{1}{\frac{9}{10}} \:=\:\frac{10}{9}

d\;=\;x\left[1 + \tfrac{2}{10}\left(\tfrac{10}{9}\right)\right] \;=\;\tfrac{11}{9}x

Therefore: \;d \;=\;\tfrac{11}{9}(270) \;=\;330\text{ m.}

 
soroban said:
Hello, Starkiller2301!


Let x = original height.

First, the ball falls x meters.

It bounces up \tfrac{x}{10} m, and falls \tfrac{x}{10} m.
It bounces up \tfrac{x}{10^2} m, and falls \tfrac{x}{10^2} m.
It bounces up \tfrac{x}{10^3}\,m, and falls \tfrac{x}{10^3}\,m.
And so on.Total distance:

\quad d \;=\;x + 2(\tfrac{x}{10}) + 2(\tfrac{x}{10^2}) + 2(\tfrac{x}{10^3}) \cdots

\quad d \;=\;x\left[1 + \tfrac{2}{10}\underbrace{\left(1 + \tfrac{1}{10} + \tfrac{1}{10^2} +\tfrac{1}{10^3} + \cdots \right)}_{\text{geometric series}} \right]

The geometric series has sum \frac{1}{1-\frac{1}{10}} \:=\: \frac{1}{\frac{9}{10}} \:=\:\frac{10}{9}

d\;=\;x\left[1 + \tfrac{2}{10}\left(\tfrac{10}{9}\right)\right] \;=\;\tfrac{11}{9}x

Therefore: \;d \;=\;\tfrac{11}{9}(270) \;=\;330\text{ m.}
Thanks so much! I had the answer sheet but I didn't know how to get the answer. 330m was correct!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top