How fast is this bead traveling down the wire

  • Thread starter Thread starter Ronaldo21
  • Start date Start date
  • Tags Tags
    Bead Wire
Click For Summary
The discussion focuses on calculating the speed of a metal bead sliding down a friction-free wire under gravity, starting from rest. Participants emphasize using the conservation of energy principle, where gravitational potential energy at the top converts into kinetic energy as the bead descends. The maximum speed occurs at the lowest point, where potential energy is minimized. To find numerical speeds at various points (B, D, E), a reference level for potential energy must be established. However, without specific measurements for point C, a numerical answer cannot be determined for that location.
Ronaldo21
Messages
30
Reaction score
0
A big metal bead slides due to gravity along an upright frictiion-free wire. It starts from rest at the top of the wire as shown in the sketch. How fast is it traveling as it passes.

http://https://www.physicsforums.com/attachment.php?attachmentid=22509&stc=1&d=1260854052

Point B?
Point D?
Point E?
At what point does it have the maximum speed?
I got B for this because it goes down really fast.
 

Attachments

  • 359550b5-5e96-4bbe-b6f9-7940fb3e02ef.gif
    359550b5-5e96-4bbe-b6f9-7940fb3e02ef.gif
    6 KB · Views: 710
Last edited by a moderator:
Physics news on Phys.org


The way to do this question is to use conservation of energy.

Gravitational PE at top goes into PE + KE as the bead slides down.
 


so what do we exactly do?
because we don't have the number to d and e. i think i get b.
 


Ronaldo21 said:
so what do we exactly do?
because we don't have the number to d and e. i think i get b.

I think you might want to review the concept of conservation of energy for objects falling in a gravitational field. Briefly, you pick a reference level where potential energy = 0. When the object is above that level its PE is given by mgx where x is its current height. The conservation of energy equation goes as

Energy at the start = mgx + \frac{1}{2} m v^2

Here your energy at the start is mgh. Now look at your drawing carefully. Where IS the object going the fastest? This is subtle because it's where the PE is the LEAST. What is the relationship between points b, d, e? Which one is highest? Or they all at the same height?
 


hmm i think i get it so the answer will be some kind of formula then right??
 


Ronaldo21 said:
hmm i think i get it so the answer will be some kind of formula then right??

Actually you can get a numerical answer for the speed at points b, d, e if you pick your reference level (PE = 0, x = 0) along the horizontal line passing through b, d, e. You cannot get a numerical answer for point c because you don't know how far below point b it is.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
25
Views
6K
Replies
18
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
7K
Replies
18
Views
5K