How Fast Must You Throw a Baseball to Orbit an Asteroid?

AI Thread Summary
To achieve orbit at 1.0 m above the surface of a spherical asteroid with a mass of 1.12*10^17 kg and a radius of 20 km, the required throw speed is 19.3 m/s, not 27.3 m/s as initially calculated. The confusion arose from using the escape velocity formula, which includes a factor of 2, instead of the correct orbital velocity equation, which is sqrt(GM/r). The relationship between gravitational potential energy and kinetic energy is crucial for understanding orbital mechanics. The discussion highlights the importance of using the right equations for different orbital scenarios. Proper application of these formulas is essential for accurate calculations in astrophysics.
Jesse_1
Messages
1
Reaction score
0

Homework Statement


If you stand on the surface of a spherical asteroid of mass 1.12*10^17 kg and radius 20km, how fast must you throw a baseball to put it into orbit at 1.0 m above the surface?

Homework Equations


PE=KE
GMm/r^2 = 1/2mv^2
G = 6,67*10^-11

The Attempt at a Solution


I rearranged the above equation to get the equation for orbital velocity..
Vorbital = sqrt (2GM/r)
Plugged in the numbers
sqrt((2*6.67*10^-11)*(1.12*10^17)/(20000 + 1))

With that, I got 27.3 m/s which doesn't seem completely out there. The problem is the question has the answer listed as 19.3 m/s

I could not figure it out, but after some playing around realized that 19.3 is the answer if the equation is sqrt(GM/r).

Am I using the wrong equation? How does the equation work if there is no 2? I'm so confused. Thanks for any help.
 
Physics news on Phys.org
Your method seems to be setting the gravitational potential equal to the kinetic energy. So the net energy is E = 0. In general,
1. E > 0 implies a hyperbolic orbit,
2. E = 0 implies a parabolic orbit,
3. E < 0 implies an elliptical orbit.
A circular orbit falls as the third case. What you could do is simply use the velocity-radius relation for uniform circular motion:
v2/R = a.
 
Jesse_1 said:

Homework Statement


If you stand on the surface of a spherical asteroid of mass 1.12*10^17 kg and radius 20km, how fast must you throw a baseball to put it into orbit at 1.0 m above the surface?

Homework Equations


PE=KE
GMm/r^2 = 1/2mv^2
G = 6,67*10^-11

The Attempt at a Solution


I rearranged the above equation to get the equation for orbital velocity..
Vorbital = sqrt (2GM/r)
Plugged in the numbers
sqrt((2*6.67*10^-11)*(1.12*10^17)/(20000 + 1))

With that, I got 27.3 m/s which doesn't seem completely out there. The problem is the question has the answer listed as 19.3 m/s

I could not figure it out, but after some playing around realized that 19.3 is the answer if the equation is sqrt(GM/r).

Am I using the wrong equation? How does the equation work if there is no 2? I'm so confused. Thanks for any help.

Those two answers approximate the ratio of NASA's Moon Shot speed, and the Orbitting craft Speed. Looks like you have calculated "escape velocity", rather than speed needed to get it to orbit.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top