How Is Coulomb's Law Applied to Calculate Forces Between Point Charges?

AI Thread Summary
Coulomb's Law is essential for calculating the forces between point charges, as demonstrated in a scenario involving a 5C charge, a 6C charge, and a 7C charge at specified coordinates. The discussion highlights the need to accurately determine the scalar distances and unit vectors between the charges to compute the forces correctly. Participants emphasize the importance of vector addition for the resultant force, noting that mistakes often arise from misapplying formulas or using incorrect distances. A user acknowledges using the wrong formula initially, realizing that incorporating unit vectors is crucial for accurate calculations. Ultimately, understanding these principles leads to resolving the problem effectively.
azia
Messages
3
Reaction score
0
A 5C point charge located at (2m, 3m, 4m) and a 6C point charge located at (4m, 3m, 2m) together exert a net force on a 7C point charge located at (2m, 4m, 3m) is most closely represented by...

(a) k(-6i + 15j - 10k) N
(b) k(-8i + 13j - 12k) N
(c) k(7i + 14j - 11k) N
(d) k(7i - 14j - 11k) N


I know that you have to use Coulomb's law however by adding the components i continue to get the wrong answer
 
Physics news on Phys.org
azia said:
A 5C point charge located at (2m, 3m, 4m) and a 6C point charge located at (4m, 3m, 2m) together exert a net force on a 7C point charge located at (2m, 4m, 3m) is most closely represented by...

(a) k(-6i + 15j - 10k) N
(b) k(-8i + 13j - 12k) N
(c) k(7i + 14j - 11k) N
(d) k(7i - 14j - 11k) N


I know that you have to use Coulomb's law however by adding the components i continue to get the wrong answer

Have you found the ratio of the magnitudes of the forces from each charge - I think I got 15:7, but did it quickly so may be in error

Have you found separations correctly?

Currently we don't know what you have found??

we are not
 
honestly my professor did not give me very much direction with this and the math is something i have not taken yet. with the info that i had i thought that i would have to find the force from the 5C charge and the 6C charge on the 7C charge and then add them up. When i do this i get odd answers
 
azia said:
honestly my professor did not give me very much direction with this and the math is something i have not taken yet. with the info that i had i thought that i would have to find the force from the 5C charge and the 6C charge on the 7C charge and then add them up. When i do this i get odd answers

OK, post here how you got the force of the 5C on the 7C.

even just the distance from the 5C to the 7C would be a start.
 
Hello azia,

Welcome to Physics Forums!

Here's a few hints. First, take a look at coulombs law for two point charges:

\vec F = k \frac{q_1 q_2}{r^2}\hat a_r

Note that F is a vector. But also note that r is not a vector in the above equation. r is a scalar. The scalar distance between the two point charges.

Here \hat a_r is a unit vector. You coursework might use different notation, such as maybe \hat r. The "hat" on top is typically what distinguishes it as a unit vector in most notations. I'll call it \hat a_r for now, but you should use whatever notation your coursework uses. A unit vector has a magnitude of 1 and a direction. for electrostatics, the direction points from the charge exerting the force to the charge that the force is acting upon (reverse to find the force on the first charge).

\hat a_r can be written in the notation
\hat a_r = (a_x, \ a_y, \ a_z) = a_x \hat \imath + \ a_y \hat \jmath + \ a_z \hat k

Now those hints I mentioned.

(1) Remember in Coulombs law that r is a scalar. You're going to need to find a separate r for each of two charges that exhibit a force on the third charge. You'll need to find the scalar distances. Well, specifically you'll need to find the square of each of these distances.

(2) You will also need to find the unit vectors. It isn't too tough. For each case, it's just the position of the 7 C charge minus the position of the another charge, divided by the distance between them. Remember, these unit vectors will be vectors with a magnitude of 1 (and will be unit-less).

(3) You'll need to do this twice. Once using the 5 C charge and another using the 6 C charge. You'll get two forces.

(4) These forces are added together to create the final force. Just remember, they are vectors and you need to add the components individually.

(5) The possible values that you must pick from in the problem statement are highly rounded. they are approximate.

--------------------------
Edit:

By the way, some textbooks/coursework use the mathematical notation:

\vec F = k \frac{q_1 q_2}{r^3} \vec r

which works fine too. But you'll still need to find the scalar distance, and the process of solving the problem is mostly the same.

Use whichever method/notation your coursework uses.

And by the way, please show your work and maybe we can help you figure out what, if anything, is going wrong.
 
Last edited:
thank you collinsmark! i was using the wrong formula. instead of using the unit vector i was just using the difference between the 2 vectors. I think once i correct that it should come out okay. Thank you again, i had spent a total of bout 3 hours on this. it's a lot easier than i made it
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top