How is rotation mathematically defined beyond the rotation matrix?

aaaa202
Messages
1,144
Reaction score
2
For a mathematician, how is rotation defined in the most general sense?

Question arose to me because it occurred to me that an essential property of the rotation matrix is that it preserves lengths. Is this the only mapping (if not please give me a counterexample) that has this property (identity is also a special case of a rotation of course) and can this be shown?

Might seem like a very lose question and indeed it is, so speak freely about anything that you think could improve my understanding of the fundamental mathematics behind rotation.
 
Physics news on Phys.org
I would personally define a rotation as everything in SO_n(\mathbb{R}). So the linear maps which preserve length and which preserve the orientation.

We had some threads about this before though. I remember Fredrik say that he would consider O_n(\mathbb{R}) as the rotations for convenience. So my answer is definitely not the only possible answer you can give.

I'll see if I can dig up some old threads.
 
micromass said:
I remember Fredrik say that he would consider O_n(\mathbb{R}) as the rotations for convenience.
I have seen at least two conventions in the literature:

1. Members of O(n) are called rotations (or orthogonal transformations), and members of SO(n) are called proper rotations.
2. Members of O(n) are called orthogonal transformations, and members of SO(n) are called rotations.

In one of those threads I said that I prefer convention 1. Lately I've been thinking that I prefer convention 2.
 
aaaa202 said:
For a mathematician, how is rotation defined in the most general sense?

Question arose to me because it occurred to me that an essential property of the rotation matrix is that it preserves lengths. Is this the only mapping (if not please give me a counterexample) that has this property (identity is also a special case of a rotation of course) and can this be shown?

Might seem like a very lose question and indeed it is, so speak freely about anything that you think could improve my understanding of the fundamental mathematics behind rotation.
Here is a simple concrete example in ##\mathbb{R}^2##: let ##T:\mathbb{R}^2 \rightarrow \mathbb{R}^2## be the map defined by
$$T\left(\begin{bmatrix}x \\ y \end{bmatrix} \right) = \begin{bmatrix}y \\ x \end{bmatrix}$$
i.e. we interchange the ##x## and ##y## axes. This is a linear map which preserves lengths, but it is not a rotation in the geometric sense. (There is also a "flip" involved.) Note that the matrix representation of ##T## with respect to the usual basis is
$$[T] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
so the determinant is -1, which shows that ##T \in O(\mathbb{R}^2)## but ##T \not\in SO(\mathbb{R}^2)##.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top