MHB How Is the Integral of the Square of Log-Sine Calculated?

  • Thread starter Thread starter The Lord
  • Start date Start date
  • Tags Tags
    Integrate Square
AI Thread Summary
The integral of the square of the logarithm of the sine function, given by $$\int_0^{\pi/2} (\log \sin x)^2 dx$$, is evaluated using differentiation of the sine integral in terms of the gamma function. The result is shown to be $$\frac{1}{24} \left(\pi^3 + 12 \pi \log^2(2)\right)$$. The discussion highlights the tedious nature of differentiating gamma and digamma functions to arrive at the solution. An alternative method involving the Beta function is suggested, which simplifies the process by differentiating the Beta function twice with respect to its parameters. The conversation emphasizes the complexity of the integral and the potential for more elegant solutions.
The Lord
Messages
4
Reaction score
0
Prove that

$$\int_0^{\pi/2} (\log \sin x )^2 dx = \frac{1}{24} \left(\pi ^3+12 \pi \log^2(2)\right)$$
 
Mathematics news on Phys.org
Hi! :D
I think I know how to solve this integral but my method is a little tedious. Anyway I will post my solution.

Let $\displaystyle I(n) = \int_0^{\pi/2}\sin ^n (x)dx$

$I(n)$ can be evaluated in terms of gamma function.

$$ I(n)= \int_0^{\pi/2}\sin ^n (x)dx = \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{2\Gamma \left( 1+\frac{n}{2}\right)}$$

Differentiating with respect to n

$$ I'(n) = \int_0^{\pi/2}\sin^n (x) \log(\sin x) dx = \\ \frac{\sqrt{\pi} \Gamma \left( \frac{1+n}{2}\right)}{4\Gamma \left( 1+\frac{n}{2}\right)} \left( \psi \left( \frac{1+n}{2}\right) -\psi\left( 1+\frac{n}{2}\right)\right) \tag{1}$$

Let n=0

$$ I'(0) = \int_0^{\pi/2}\log(\sin x)dx = \frac{\sqrt{\pi} \sqrt{\pi}}{4} \left( \gamma -\gamma -2\ln(2)\right) = \frac{-\pi}{2}\ln(2)$$

$\gamma$ is the Euler-Mascheroni Constant. For the Square of Log-Sine we must differentiate (1) again.

$$I''(n)=\int_0^{\pi/2}\sin^n(x) (\log(\sin x))^2 dx = \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(1+\frac{n}{2}\right) \psi\left(\frac{1+n}{2}\right)}{4 \Gamma\left(1+\frac{n}{2}\right)}+ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi\left(\frac{1+n}{2}\right)^2}{8 \Gamma\left(1+\frac{n}{2}\right)}- \\ \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right) \psi_1 \left(1+\frac{n}{2}\right)}{8 \Gamma \left(1+\frac{n}{2}\right)} + \frac{\sqrt{\pi } \Gamma\left(\frac{1+n}{2}\right)\psi_1\left(\frac{1+n}{2}\right)}{8 \Gamma\left(1+\frac{n}{2}\right)} \tag{2}$$

$\psi_1(z)$ is the PolyGamma Function. Put n=0.

$$I''(0) =\int_0^{\pi/2}\left( \log \sin x\right)^2 dx = \frac{1}{24}\left( \pi^3 +2\pi \log^2(2)\right)$$

Here, I have used

$\psi_1 \left( \frac{1}{2}\right)=\frac{\pi^2}{2}$

$\psi_1 \left( 1\right) = \frac{\pi^2}{6}$

$\psi \left( \frac{1}{2}\right) = -\gamma -2\ln(2)$

$\psi(1) = -\gamma$

and $\Gamma \left( \frac{1}{2}\right)=\sqrt{\pi}$

As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?
 
Last edited:
sbhatnagar said:
As I mentioned before, differentiating all the gamma and digamma can be tedious. Maybe Mr.Lord has a more elegant method in mind?

Great! This was my approach as well. (Yes)
 
Interesting problem...

The thing to do here is to consider the Beta function:

$$B(p,q)=2\int_0^{\pi/2}\sin^{2p-1}x\cos^{2q-1}\,dx\equiv \frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$Now differentiate $$\frac{2\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$ twice w.r.t $$p$$, which will give an expression in terms of the Beta function, Digamma, and Trigamma functions. Then set $$q=p=1/2$$, since:

$$\frac{d^2}{dp^2} B(p,q)\, \Bigg|_{p=q=1/2}\equiv\int_0^{\pi/2}\log^2(\sin x)\,dx$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top