How Is Torque Generated by Friction on a Rotating Disc Calculated?

AI Thread Summary
To calculate the torque generated by friction on a rotating disc, the disc can be divided into narrow rings for analysis. The friction force is determined by the equation F = μN, where N is the normal force, which can be expressed as μmg or μg dm for differential mass elements. The torque can be expressed as dτ = μg r dm, where r is the distance from the center of the disc. Integration is necessary to find the total torque, with limits defined by the mass distribution of the disc. Understanding the relationship between dm and dV, along with the symmetry of the disc, is crucial for proper integration.
johnysmithers
Messages
2
Reaction score
0
If I have a spinning circular disc of uniform density, how would I find the torque generated by friction, if the disc is lying flat against a table with coefficient of friction μ? τ=Fxr, but what is F, and what is r in this case?
 
Physics news on Phys.org
Welcome to PF;

You use calculus ... divide the disk into narrow rings.
 
Thank you Mr. Bridge, for your reply. I am still confused however, as towhat the force on a differential element would be. The friction force would be μ N=μ m g(or would it be μ g dm?) The friction force would always act perpendicular to position, so torque would be upward with magnitude equal to the product of the distance from the center and the force. However, I am not sure what I would be integrating with respect to, and I am also unsure as to what the bounds on the integration would be. Please clarify? Thank you in advance.
 
That would be:
##d\tau = \mu g r \text{d}m##

The limits of the integration depend on how you define dm ...
hint: relate dm to dV (volume) and exploit the symmetry.

Friction force always acts opposite to the velocity vector.
Friction torque always twists the opposite way to the angular velocity.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top