How Long Does It Take for a Pencil to Fall?

  • Thread starter Thread starter rogeralms
  • Start date Start date
  • Tags Tags
    Falling Pendulum
rogeralms
Messages
19
Reaction score
0

Homework Statement


A pencil of length l = 0.2 m is balanced on its point. How much time does it take to fall? Assume that the pencil is a massless rod and all of its mass is at the tip. To make the math easier, assume the small angle approximation.


Homework Equations



theta (double dot) = g/l sin theta

T = 2 pi (l/g) ^ (1/2)


The Attempt at a Solution



Since the pencil seems to be an inverted pendulum and the fall would be only 1/4 of the period, I first tried T/4 = pi/2 (.2/9.8) ^ (1/2). But that is not a correct solution.

Next I tried to rearrange and integrate

1/sin theta d2theta = g/l dt2

1/sin theta = sin theta/ sin2theta= sin theta/(1 - cos2theta)

let u = cos theta so du=- sin theta d theta

Integral( 1/ u2 - 1) du = 1/2 ln(u - 1) - 1/2 ln (u + 1)

[ 1/2 ln (cos theta -1) - 1/2 ln (cos theta + 1)] d theta = gt/l dt

I get lost here because the cos pi/2 is zero which makes the above meaningless.

The way I interpret the problem, all the mass is at the balancing point. So how can you use energy to calculate potential difference or KE?

If someone could just give a hint as to the approach, I would be greatful.

Thank you.
 
Physics news on Phys.org
if the whole pencil can fall then θ will be π/2 how can the 'small angle approximation' hold?
 
Arkavo said:
if the whole pencil can fall then θ will be π/2 how can the 'small angle approximation' hold?

Sorry, I agree, but that was the problem that I was given.

I think as in a lot of physics problems the assumption is made to make a good approximation.

As in how to design an automatic chicken plucker: First you assume a perfectly symmetrical, spherical chicken...
 
The small angle approximation helps you to get started. ##\theta(0)=0## doesn't. :smile:
 
Answer to pencil problem

Attached is the answer for your falling pencil pleasure. Hope this helps someone.
 

Attachments

Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top