thecommexokid
- 68
- 2
Homework Statement
Two particles (masses m1, m2) are released from rest a distance D apart in space. How long until they collide?
Homework Equations
The force between the particles is F_G(t)=\frac{Gm_1m_2}{r(t)^2}.
The center of mass is located a distance r_1(t)=\frac{m_2}{m_1+m_2}r(t) from particle 1 and r_2(t)=\frac{m_1}{m_1+m_2}r(t) from particle 2. Note that r_1(t)+r_2(t)=r(t).
The Attempt at a Solution
The collision will take place at the center of mass. Particle 1 needs to traverse a total distance of d_1=\frac{m_2}{m_1+m_2}D to reach the COM. Its acceleration over this distance is
\ddot r_1(t)=\frac{m_2}{m_1+m_2}\ddot r(t)=\frac{Gm_2}{r(t)^2}.
OR! Another approach I thought of was to use potential and kinetic energy:
-\frac{Gm_1m_2}{D}=-\frac{Gm_1m_2}{r(t)}+\frac{1}{2}m_1v_1(t)^2+\frac{1}{2}m_2v_2(t)^2
=-\frac{Gm_1m_2}{r(t)}+\frac{1}{2}m_1m_2\dot r(t)^2.
=-\frac{Gm_1m_2}{r(t)}+\frac{1}{2}m_1m_2\dot r(t)^2.
But either way, I wind up with a differential equation that's totally inhumane. I feel like I'm missing something here. Open to suggestion on how to further either of these two approaches, or other approaches entirely.