How Many Counterterms Are Needed for Logarithmic Divergences?

  • Thread starter Thread starter zetafunction
  • Start date Start date
zetafunction
Messages
371
Reaction score
0
If i have ONLY logarithmic divergences as \lambda \rightarrow \infty of the form

log(a+\lambda ^{n}) or log (\lambda ) or log^{k}(\lambda) for some real numbers a,n and k HOW many counterterms should i put into de Lagrangian in order to make it FINITE ?? , the idea is let us suppose we use DIMENSIONAL REGULARIZATION so we only had logarithmic divergent integrals (and assuming that power law divergences can be reduced by dimensional regularization or other method to only logarithmic divergences), how many counterterms should i add to the original lagrangian to obtain finite results ??
 
Physics news on Phys.org
One way around is to use operator-regularization (a generalization of the zeta-function) that will take care of everything, and preclude the need to add extra terms to the original Lagrangian (should they be needed).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top