How many mutually nonisomorphic Abelian groups of order 50

  • Thread starter Thread starter Whenry
  • Start date Start date
  • Tags Tags
    Groups
Whenry
Messages
22
Reaction score
0

Homework Statement



My question is about the rules behind the method of finding the solution not necessarily the method itself.

(I am prepping for the GRE subject)

How many mutually nonisomorphic Abelian groups of order 50?


The Attempt at a Solution



so, if understand this correctly, we have 2 of these groups:

1) Z2 + Z5 + Z5

2) Z2 + Z25

However, what I don't understand is why these are mutually nonisomorphic. The theorems presented before this problem state:

The direct sum Zm + Zn is cyclic iff gcd(m,n) = 1. If this is the case, then, since Zm + Zn has order mn, Zm +Zn is isomorphic to Zmn,

So are groups 1 and 2 both isomorphic to Z50 but not isomorphic to each other? which dosen't make sense to me.
 
Physics news on Phys.org
Whenry said:

Homework Statement



My question is about the rules behind the method of finding the solution not necessarily the method itself.

(I am prepping for the GRE subject)

How many mutually nonisomorphic Abelian groups of order 50?


The Attempt at a Solution



so, if understand this correctly, we have 2 of these groups:

1) Z2 + Z5 + Z5

2) Z2 + Z25

However, what I don't understand is why these are mutually nonisomorphic. The theorems presented before this problem state:

The direct sum Zm + Zn is cyclic iff gcd(m,n) = 1. If this is the case, then, since Zm + Zn has order mn, Zm +Zn is isomorphic to Zmn,

So are groups 1 and 2 both isomorphic to Z50 but not isomorphic to each other? which dosen't make sense to me.

No, not at all. Only group (2) is isomorphic to Z50. Group (1) is not cyclic.

How do we prove that (1) and (2) are not isomorphic?? Well, the easiest way is to check the orders of the elements. Prove that (2) has an element of order 25, but (1) does not have such an elements.
 
micromass said:
No, not at all. Only group (2) is isomorphic to Z50. Group (1) is not cyclic.

How do we prove that (1) and (2) are not isomorphic?? Well, the easiest way is to check the orders of the elements. Prove that (2) has an element of order 25, but (1) does not have such an elements.

Ok, yes, it makes sense now. For some reason I ignored the gcd(m,n). Thank you.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top