Let'sthink said:
Stephen Tashi, thanks for responding. What is the correct or appropriate statement of teh following:
1. The set A is related to set B.
2.The set B is related to set A.
3. There is a relation between the sets A and B.
I don't know of any standard mathematical definition for a relation "between" sets.
So let's look at your post #8 and consider what you want the statement "##R## is a relation between ##A## and ##B##" to mean.
I think you want each element of ##A## to in at least one of the ordered pairs of ##R##.
With that requirement, we would not consider ##R = \{(a1,b1), (a2,b4)\}## to be a relation between ##A## and ##B## because some of the elements of ##A## are missing in the first members of the ordered pairs of ##R##.
Now let's consider ##R = \{ (a1,b1),(a1,b2), (a3,b4), (a4,b4) ,(a5,b4), (a6,b4)\}##. Do you want ##R## to be a relation between ##A## and ##B## or do you want to disqualify it because it contains both ##(a1,b1)## and ##(a1,b2)## ?