MHB How many triangles can be proclaimed as right angled ?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Triangles
Click For Summary
In a circle with 24 equally spaced points, any three points can form an inscribed triangle. For a triangle to be right-angled, one of its sides must be the diameter of the circle, creating a semicircle arc. The angle inscribed in this semicircle is a right angle, as it measures half the arc it subtends. Each pair of points on the circle can form a diameter, leading to the conclusion that there are 12 unique diameters among the 24 points. Therefore, 12 right-angled triangles can be formed from these points.
Albert1
Messages
1,221
Reaction score
0
24 points $A_1,A_2,-----,A_{24}$ equally divide the circumference of circle $O$
,any three of the 24 points will determine an inscribed triangle,
now how many triangles can be proclaimed as right angled ?
 
Mathematics news on Phys.org
Albert said:
24 points $A_1,A_2,-----,A_{24}$ equally divide the circumference of circle $O$
,any three of the 24 points will determine an inscribed triangle,
now how many triangles can be proclaimed as right angled ?

$A_1,A_{13}$ lie on on a diameter l so $A_1,A_{13}$ with any of other A that is 22 values form a right angled triangle

there are 12 diameters so number of right angled triangles = 22 * 12 = 264
 
Last edited:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.
 
HallsofIvy said:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.
diagonal $\overline{A_1A_{13}}$ happens to be a diameter of the given circle
 
HallsofIvy said:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.

Thanks. done the correction in line
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K