MHB How many triangles can be proclaimed as right angled ?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Triangles
AI Thread Summary
In a circle with 24 equally spaced points, any three points can form an inscribed triangle. For a triangle to be right-angled, one of its sides must be the diameter of the circle, creating a semicircle arc. The angle inscribed in this semicircle is a right angle, as it measures half the arc it subtends. Each pair of points on the circle can form a diameter, leading to the conclusion that there are 12 unique diameters among the 24 points. Therefore, 12 right-angled triangles can be formed from these points.
Albert1
Messages
1,221
Reaction score
0
24 points $A_1,A_2,-----,A_{24}$ equally divide the circumference of circle $O$
,any three of the 24 points will determine an inscribed triangle,
now how many triangles can be proclaimed as right angled ?
 
Mathematics news on Phys.org
Albert said:
24 points $A_1,A_2,-----,A_{24}$ equally divide the circumference of circle $O$
,any three of the 24 points will determine an inscribed triangle,
now how many triangles can be proclaimed as right angled ?

$A_1,A_{13}$ lie on on a diameter l so $A_1,A_{13}$ with any of other A that is 22 values form a right angled triangle

there are 12 diameters so number of right angled triangles = 22 * 12 = 264
 
Last edited:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.
 
HallsofIvy said:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.
diagonal $\overline{A_1A_{13}}$ happens to be a diameter of the given circle
 
HallsofIvy said:
I think you mean "diameter" rather than "diagonal". Albert, the measure of an angle inscribed in a circle is 1/2 the measure of the arc it subtends. In order that the angle be right, that arc subscribed must be a semicircle so that the hypotenuse of the triangle is a diameter of the circle.

Thanks. done the correction in line
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top