Andrei1
- 36
- 0
My answers:Let $$K_n$$ be the $$n$$-clique for some $$n\in\mathbb{N}$$. Then any graph having at most $$n$$ vertices is a subgraph of $$K_n$$.
(a) How many substructures does $$K_n$$ have?
(b) How many substructures does $$K_n$$ have up to isomorphism?
(c) How many elementary substructures does $$K_n$$ have?
(a) $$2^n$$
(b) $$n$$
(c) $$2^n$$
Are they correct?