How much thermal energy it takes to raise the temperature

AI Thread Summary
The discussion focuses on converting kinetic energy to thermal energy and determining the thermal energy required to raise Earth's atmosphere temperature by one degree. The most efficient method suggested for this conversion is hydraulic friction, though it cannot achieve 100% efficiency due to energy loss as sound. To calculate the thermal energy, participants mention using the specific heat capacity of the atmosphere, the mass of the atmosphere, and the heat converted from kinetic energy, applying the equation q=McT. There is uncertainty about predicting temperature change and how to quantify kinetic energy in joules. The specific heat capacity of dry air is noted as approximately 1.006 kJ/kg°C, but it varies throughout the atmosphere.
forumasker
Messages
7
Reaction score
0
It's not really homework, it's more of my own testing of a hypothesis, but I don't really know where else to put it.
I need a way to convert kinetic energy directly to thermal energy as find out how much thermal energy it takes to raise the temperature of the atmosphere 1 degree, or I guess Earth's atmosphere's specific heat.
 
Physics news on Phys.org


Ok, I am not really sure what your asking. I guess that the most efficent way to convert Kinetic energy into Thermal energy would be through some form of Hyrdaulic Friction, but this could never be 100% efficent as some energy would be converted into sound.

As for the whole Thermal energy atmosphere thing, i guess the best way to go would be to find the Specific heat capacity of the atmosphere (c), the mass of the atmosphere (M) and the quantity of heat in Joules that is converted from kinetic energy (q). Then apply these to the Equation:

q=McT (with T being the change in temperature - Hope this Helps :)

Now I've finished writing this i suddenly realize that this thread shouldn't be in the coursework section of the forum. For future reference please put questions like this in the Physics section of the website.
 


Saxby said:
Ok, I am not really sure what your asking. I guess that the most efficent way to convert Kinetic energy into Thermal energy would be through some form of Hyrdaulic Friction, but this could never be 100% efficent as some energy would be converted into sound.

As for the whole Thermal energy atmosphere thing, i guess the best way to go would be to find the Specific heat capacity of the atmosphere (c), the mass of the atmosphere (M) and the quantity of heat in Joules that is converted from kinetic energy (q). Then apply these to the Equation:

q=McT (with T being the change in temperature - Hope this Helps :)

Now I've finished writing this i suddenly realize that this thread shouldn't be in the coursework section of the forum. For future reference please put questions like this in the Physics section of the website.

Huh, I thought this topic got deleted since i couldn't find it before...I have another topic if you want to continue on that one...
Specific heat...So I would need at least 3 variables to be filled in for it to be useful, but how am I suppose to predict the temperature change and how much joules that it's suppose to convert to if I am using that equation to find out how many joules the kinetic energy equals at once?
Unless your saying I just plug in my value for kinetic energy in place of "q"? Or how do I convert kinetic energy into thermal energy or "joules"? I never really understood how to use specific heat. I know that its suppose to tell you the amount of energy required to raise a mass 1 degree or something like that, but that's it...

The mass of Earth's atmosphere is approximately
5.3 × 10^18 kg

http://hypertextbook.com/facts/1999/LouiseLiu.shtmlI don't know what the temperature change is, I'm trying to predict that...
I don't know the specific heat capacity...
I don't know how many joules I have which is currently in the form of kinetic energy...

Unless maybe kinetic energy and joules are that much of the same thing that I can use kinetic energy as joules?
 
Last edited:


1 joule of any energy, is equal to 1 joule of any other energy. So you can simply put in your value for kinetic energy (q).

Specific heat capacity is the amount of energy it takes increase the temperature of 1kg of a material by 1ºC. I believe the specific heat capactiy of dry air is 1.006 kJ/kgC. But this would not be constant throughout the entire atmosphere of the world.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top