I How Peskin & Schroeder simplified this horrible product of bilinears?

hamad12a
Messages
4
Reaction score
0
TL;DR Summary
I couldn't understand how to pass from sigma to sigma bar Pauli matrices.
P&S had calculated this expression almost explicitly, except that I didn't find a way to exchange the $$\nu \lambda$$ indices, but I'm sure the below identity is used,

$$
\begin{aligned}\left(\overline{u}_{1 L} \overline{\sigma}^{\mu} \sigma^{\nu} \overline{\sigma}^{\lambda} u_{2 L}\right)\left(\overline{u}_{3 L} \overline{\sigma}_{\mu} \sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right) &=2 \epsilon_{\alpha \gamma} \overline{u}_{1 L \alpha} \overline{u}_{3 L \gamma} \epsilon_{\beta \delta}\left(\sigma^{\nu} \overline{\sigma}^{\lambda} u_{2 L}\right)_{\beta}\left(\sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right)_{\delta} \\ &=2 \epsilon_{\alpha \gamma} \overline{u}_{1 L \alpha} \overline{u}_{3 L \gamma} \epsilon_{\beta \delta} u_{2 L \beta}\left(\sigma^{\lambda} \overline{\sigma}^{\nu} \sigma_{\nu} \overline{\sigma}_{\lambda} u_{4 L}\right)_{\delta} \end{aligned}
$$

The identity is,

$$
\epsilon_{\alpha \beta}\left(\sigma^{\mu}\right)_{\beta \gamma}=\left(\overline{\sigma}^{\mu T}\right)_{\alpha \beta} \epsilon_{\beta \gamma}
$$
 
Physics news on Phys.org
When asking questions of this kind, you'd get more help more quickly if you state the precise page number(s) and equation number(s), instead of expecting potential helpers to trawl through the book trying to find it.
 
  • Like
Likes vanhees71 and Demystifier
strangerep said:
When asking questions of this kind, you'd get more help more quickly if you state the precise page number(s) and equation number(s), instead of expecting potential helpers to trawl through the book trying to find it.
it's on page 51, Peskin & Schroeder's book.
 
Hey good question. This comes down to a few basic observations about sigma matrices.
First of all, we note
$$
(i\sigma ^2)_{\alpha\beta} = \epsilon_{\alpha\beta}.
$$
Next we rephrase the statement of the problem in a slightly more illuminating form:
$$
(i\sigma^2 \sigma^{\mu})_{\alpha\beta}= ((\bar{\sigma^{\mu}})^T)i\sigma^2)_{\alpha\beta}
$$
and of course two matrices are equal if and only if all their entries are equal one by one, so it is easy to see how the indices nomenclature of the statement of the problem follows (note ##\beta## is summed over).
Now, notice from the particular form of the Pauli matrices that they are all symmetric but ##\sigma^2##. This means that only ##\sigma^2## changes sign under transposition.
Moreover, consider the identity
$$
\{\sigma^i, \sigma^j\} = \delta^{ij}
$$.
Thus commuting ##\sigma^2## past all sigmas from the left (or if you wish you can reverse left and right of the identity) - and the identity matrix in the first position - in the four vector ##\sigma^{\mu}##, we obtain the desired identity, since ##\sigma^2## anti-commutes with all components except itself; but the change of sign here is taken care of by the transposition.

I hope this was clear enough.
mdb71.
 
Last edited:
  • Like
Likes vanhees71, atyy and DarMM
@mdb71 the [CODE] BB code tag is for displaying program source code, not for LaTeX. LaTeX only needs to be delimited by $$ for separate equations or ## for inline (these replace the old and delimiters which no longer work).<br /> <br /> I have used magic moderator powers to edit your post accordingly.
 
  • Like
Likes mdb71
Thanks a lot, appreciate. Got it now, I was still getting used to it.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top