How should I begin this question?

  • Thread starter Thread starter omega16
  • Start date Start date
omega16
Messages
20
Reaction score
0
If alpha is a quadratic integers in Q[sqrt(-d)] , then define a notion of congruence (mod alpha).
Furthermore, define +, -, and X for congruence classes , and show that this notion is well-defined.

Could you please guide me to begin this question? Thank you very much.
 
Physics news on Phys.org
Do you know how to do that for ordinary integers? If so, just follow the same basic idea.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top