- #1
- 59
- 1
In a circuit there are two forces that act on the charges to keep the current uniform through out,
##\vec{f}=\vec{E}+\vec{f_s}##, where ##\vec{E}## is the electrostatic field and ##\vec{f_s}## is the electric field produced by chemical reactions. Inside an ideal battery, ##\vec{E}## and ##\vec{f_s}##, oppose each other such that ##\vec{f}##, is zero. What exactly would be the correct way of thinking of ##\vec{f}=0##? I mean obviously the charges are moving, but it looks like in the battery they are not.
##\vec{f}=\vec{E}+\vec{f_s}##, where ##\vec{E}## is the electrostatic field and ##\vec{f_s}## is the electric field produced by chemical reactions. Inside an ideal battery, ##\vec{E}## and ##\vec{f_s}##, oppose each other such that ##\vec{f}##, is zero. What exactly would be the correct way of thinking of ##\vec{f}=0##? I mean obviously the charges are moving, but it looks like in the battery they are not.