MHB How this exponent expression is reduced

AI Thread Summary
The expression A initially contains 8 terms but is reduced to 5 through simplification. The term -10^22 is rewritten as -10×10^21, allowing for the combination with 12×10^21 to yield 2×10^21. Similarly, -12×10^15 and 61×10^14 are combined to produce -59×10^14. The terms 3×10^9 and -36×10^8 are also simplified to -60×10^7. This process demonstrates how combining like terms effectively reduces the expression.
Sabeel
Messages
3
Reaction score
0
Initially the expression A has 8 terms. So how is it reduced in the second line to 5 terms?
Could you show me, please?
Thank you.
\begin{align*}
A&=10^{28} -10^{22} +61\times10^{14}+12\times10^{21}-12\times10^{15}+3\times10^{9}-36\times10^{8}+9\times10^{2}\\
&=10^{28} +2\times10^{21}-59\times10^{14}-60\times10^{7}+9\times10^{2}
\end{align*}
 
Mathematics news on Phys.org
Sabeel said:
Initially the expression A has 8 terms. So how is it reduced in the second line to 5 terms?
Could you show me, please?
Thank you.
\begin{align*}
A&=10^{28} -10^{22} +61\times10^{14}+12\times10^{21}-12\times10^{15}+3\times10^{9}-36\times10^{8}+9\times10^{2}\\
&=10^{28} +2\times10^{21}-59\times10^{14}-60\times10^{7}+9\times10^{2}
\end{align*}
Hi Sabeel, and welcome to MHB!

Here's a clue that might get you started. One of the terms in the first line is $-10^{22}$. You could write that as $-10\times 10^{21}$.
 
Opalg said:
Hi Sabeel, and welcome to MHB!

Here's a clue that might get you started. One of the terms in the first line is $-10^{22}$. You could write that as $-10\times 10^{21}$.

Thank you for welcoming me, and thank you for your answer.
Your hint is useful: $12^{21} - 10^{22} = 12^{21} -10\times 10^{21} =(12-10)10^{21}=2\times10^{21}$
I'll struggle with the others and report back.
 
$-12\times10^{15}+61\times10^{14}=-12\times10\times10^{14}=10^{14}(-120+61)=-59\times10^{14}$
$3\times10^{9}-36\times10^{8}=3\times10\times10^{8}-36\times10^{8}=10^8 (30-36)=-6\times10^{8}=-60\times10^{7}$

Your hint was more than useful. Thank you so much.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top