Agrippa
- 77
- 10
The GHZ state is:
|\psi> = \frac{|000> + |111>}{\sqrt2}
To calculate density matrix we go from:
GHZ = \frac{1}{2}(|000> + |111>)(<000| + <111|)
GHZ = \frac{1}{2}( |000><000| + |111><111| + |111><000| + |000><111|)
To:
GHZ<br /> = 1/2[<br /> \left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> <br /> ]
And finally to:
<br /> GHZ = 1/2\left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br />
But I see another author (p2) separates the Hilbert space into two subsystems GHZA⊗GHZBC and gets a "reduced" density matrix:
<br /> GHZ_A⊗GHZ_{BC} = 1/4\left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br />
Can anyone explain what this final matrix represents, and how one calculates it?
|\psi> = \frac{|000> + |111>}{\sqrt2}
To calculate density matrix we go from:
GHZ = \frac{1}{2}(|000> + |111>)(<000| + <111|)
GHZ = \frac{1}{2}( |000><000| + |111><111| + |111><000| + |000><111|)
To:
GHZ<br /> = 1/2[<br /> \left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> +<br /> \left( \begin{array}{cc}<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> \end{array} \right)<br /> <br /> ]
And finally to:
<br /> GHZ = 1/2\left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br />
But I see another author (p2) separates the Hilbert space into two subsystems GHZA⊗GHZBC and gets a "reduced" density matrix:
<br /> GHZ_A⊗GHZ_{BC} = 1/4\left( \begin{array}{cc}<br /> 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\<br /> 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\<br /> \end{array} \right)<br />
Can anyone explain what this final matrix represents, and how one calculates it?
Last edited: